Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama.

Slides:



Advertisements
Similar presentations
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Advertisements

Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Internal structure of Neutron Stars. Artistic view.
Cooling of Compact Stars with Color Superconducting Quark Matter Tsuneo Noda (Kurume Institute of Technology) Collaboration with N. Yasutake (Chiba Institute.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Xia Zhou & Xiao-ping Zheng The deconfinement phase transition in the interior of neutron stars Huazhong Normal University May 21, 2009 CSQCD Ⅱ.
Metastability of Hadronic Compact Stars I. Vidaña & I. Bombaci, P. K. Panda, C. Providência “The Complex Physics of Compact Stars” Ladek Zdroj, Poland,
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
Lesson 8 Beta Decay. Beta -decay Beta decay is a term used to describe three types of decay in which a nuclear neutron (proton) changes into a nuclear.
Compton Scattering in Strong Magnetic Fields Department of Physics National Tsing Hua University G.T. Chen 2006/5/4.
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in fully Relativistic Approach Nuclear Matter ⇒ RMF Approach Different Mean-Field for p,
Ferromagnetic properties of quark matter a microscopic origin of magnetic field in compact stars T. Tatsumi Department of Physics, Kyoto University I.Introduction.
Ferromagnetism in quark matter and origin of magnetic field in compact stars Toshitaka Tatsumi (Kyoto U.) (for a recent review, hep-ph/ ) I. Introduction.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Strong Magnetic Field (SMaF) in Nuclear Astrophysics Myung-Ki Cheoun Astro Nuclear Physics Group Soongsil University, Seoul, Korea
From Supernovae to Neutron Stars
Internal structure of Neutron Stars. Artistic view.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
強磁場原始中性子星での ニュートリノ反応断面積の非対称性と関連現 象 1 共同研究者 日高 潤 国立天文台 日高 潤 国立天文台 国立天文台 黒田 仰生 国立天文台 滝脇 知也 国立天文台 滝脇 知也 国立天文台 梶野 敏貴 国立天文台 梶野 敏貴 国立天文台 安武 伸俊 千葉工大 安武 伸俊 千葉工大.
Internal structure of Neutron Stars. Artistic view.
Equation Of State and back bending phenomenon in rotating neutron stars 1 st Astro-PF Workshop – CAMK, 14 October 2004 Compact Stars: structure, dynamics,
Neutrino reactions on two-nucleon system and core-collapse supernova
Tomoyuki MARUYAMA BRS, Nihon Univ (Japan) Collaborators
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Magnetic fields generation in the core of pulsars Luca Bonanno Bordeaux, 15/11/2010 Goethe Universität – Frankfurt am Main.
Qun Wang University of Science and Technology of China
Harleen Dahiya Panjab University, Chandigarh IMPLICATIONS OF  ´ COUPLING IN THE CHIRAL CONSTITUENT QUARK MODEL.
Parity violating neutron spin asymmetry of process in pionless effective theory Jae Won Shin Collaborators: Shung-Ichi Ando 1), Chang Ho Hyun 1), Seung-Woo.
Interplay of antikaons with hyperons in nuclei and in neutron stars Interplay of antikaons with hyperons in nuclei and in neutron stars 13th International.
Nuclear Isovector Equation-of-State (EOS) and Astrophysics Hermann Wolter Dep. f. Physik, LMU Topics: 1.Phase diagram of strongly interacting matter and.
带强磁场奇异星的 中微子发射率 刘学文 指导老师:郑小平 华中师范大学物理科学与技术学院. Pulsar In 1967 at Cambridge University, Jocelyn Bell observed a strange radio pulse that had a regular period.
Neutron Star Kicks Chris Fryer Aimee Hungerford Frank Timmes  Observational Evidence and constraints on kicks  Theoretical kick mechanisms.
【 May. 20th CS QCD II 】 N. Yasutake (NAOJ) 安武 伸俊 N. Yasutake (NAOJ) 安武 伸俊 The pasta structure of quark-hadron phase transition and the effects on.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Neutron Stars & Black Holes. Neutron Stars and Black Holes I. Neutron Stars A. Remnant from the collapse of a _________. B. During the core collapse of.
Formation of BH-Disk system via PopIII core collapse in full GR National Astronomical Observatory of Japan Yuichiro Sekiguchi.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
8th APCTP-BLTP JINR Joint Workshop, Jeju, Effects of Strong Magnetic Field (SMaF) on the Neutron Stars Myung-Ki Cheoun Astro Nuclear Physics.
Development of magneto- differential-rotational instability in magnetorotational supernovae Sergey Moiseenko, Gennady Bisnovatyi-Kogan Space Research Institute,
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
PHYS.NANKAI UNIVERSITY Relativistic equation of state of neutron star matter and supernova matter H. Shen H. Shen Nankai University, Tianjin, China 申虹.
Relativistic EOS for Supernova Simulations
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Possible Ambiguities of Neutrino-Nucleus Scattering in Quasi-elastic Region K. S. Kim School of Liberal Arts and Science, Korea Aerospace University, Korea.
Possible Ambiguities of Neutrino-Nucleus
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
Quark star RX J and its mass
Neutrino Processes in Neutron Stars
Stellar core collapse with QCD phase transition
MERGING REVEALS Neutron Star INNARDS
The quark-deconfinement model of Gamma-Ray-Bursts
Matter vs. Antimatter The Question of Symmetry
INFN Sezione di Catania
Phase transitions in neutron stars with BHF
Bayesian analysis for hybrid star
Compact objects. Neutron stars: matter under extreme conditions.
Hyun Kyu Lee Hanyang University
Internal structure of Neutron Stars
Strangeon matter in kilonova
Presentation transcript:

Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Toshitaka Kajino NAO & Univ. of Tokyo (Japan) Toshitaka Kajino NAO & Univ. of Tokyo (Japan) Nobutoshi Yasutake NAO (Japan) Nobutoshi Yasutake NAO (Japan) Myung-ki Cheoun Myung-ki Cheoun Soongs Univ. (Korea) Chung-Yeol Ryu Chung-Yeol Ryu Soongs Univ. (Korea) Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Toshitaka Kajino NAO & Univ. of Tokyo (Japan) Toshitaka Kajino NAO & Univ. of Tokyo (Japan) Nobutoshi Yasutake NAO (Japan) Nobutoshi Yasutake NAO (Japan) Myung-ki Cheoun Myung-ki Cheoun Soongs Univ. (Korea) Chung-Yeol Ryu Chung-Yeol Ryu Soongs Univ. (Korea) 1 TM et al., arXiv: , Phys. ReV. D (2011) in press

High Density Matter Study ⇒ Exotic Phases ⇒ Exotic Phases : Strange Matter, Ferromagnetism Meson Condensation, Quark matter, CSC, … Meson Condensation, Quark matter, CSC, … They may exist inside Neutron Stars (NSs) Observable Information Observable Information ‥ Neutrino Emissions from Proto-NS S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 # (1998) Influence from Hyperons Λ , ∑ Magnetar G in surface G inside (?) Magnetic Field → Large Asymmetry ? P. Arras and D. Lai, P.R.D60, # (1999) S. Ando, P.R.D68 # (2003) Neutrino Scattering & Absorption in Surface Region 2 §1. Introduction

Pulsar Kick Pulsar Kick

4 Pulsar Kick Asymmetry of Supernova Explosion kick and translate Pulsar with Kick Velocity: Average … 400km/s , Highest … 1500km/s Explosion Energy ~ erg ( almost Neutrino Emissions) 1% Asymmetry are sufficient to explain the Pulsar Kick /casa/casa_xray.jpg CasA A.G.Lyne, D.R.Lomier, Nature 369, 127 (94) Present Work ‥ Neutrino Scattering and Absorption In Hot and Dense Neutron-Star-Matter Estimating Kick Velocity

5 §2. Formulation Magnetic Field : Baryon Lepton B & L – Mag. Weak Interaction e + B → e + B : scattering e + B → e - + B’ : absorption

§2-1 Neutron-Star Matter in RMF Approach RMF Lagrangian, N, 

Charge Neutral ( ) & Lepton Fraction : Y L = 0.4 EOS of Proto Neutron-Star-Matter PM1-L1 T.M, H. Shin, H. Fujii, & T. Tatsumi, PTP. 102, P809 7

§2-2 Dirac Equation under Magnetic Fields  N B << ε F (Chem. Pot) → B can be treated perturbatively Landau Level can be ignored Dirac Eq. ~ G Magnetic Part of Lagrangian

Spin Vector Dirac Spinor

Fermi Distribution Momentum Distribution of Major Part is deformed as oblate

The Cross-Section of Lepton-Baryon Scattering Perturbative Treatment Noraml PartMagnetic Part

Spin-indep. part Spin-dep. Part

§3 Results 3% difference

14 Magnetic parts of Cross-Sections Increasing to Arctic Dir. Scat. Absorp.

Elements of Absorption Cross-Sections Contribution from Λ is small 15

§4 Neutrino Absorption in Proto Neutron Star Neutrino Propagation ⇒ Boltzmann Eq. Neutrino Phase Space Distribution Function Equib. PartNon-Equib. Part Solution ⇒

\ θ Neutrino Propagation 1)Neutrinos propagate on the straight lines 2) Neutrino are created and absorbed at all positions on the lines Mean-Free path : σ ab /V

Baryon density in Proto-Neutron Star M = 1.68M solar Y L = 0.4 Calculating Neutrino Propagation above  B =  0

Mean-Free Path when B =0

Angular Dependence of Emitted Neutrino Direction of Emitted Neutrino

21 Kick Velocity p, n p, n,  Assuming Neutrino Energy ~ 3×10 53 erg D.Lai & Y.Z.Qian, Astrophys.J. 495 (1998) L103 p, n p, n,  T = 20 MeVT = 30 MeV

22 EOS of Neutron-Star-Matter with p, n Λ in RMF Appraoch EOS of Neutron-Star-Matter with p, n Λ in RMF Appraoch Cross-Sections of Neutrino Scattering and Absorption Cross-Sections of Neutrino Scattering and Absorption under Strong Magnetic Field, calculated in Perturbative Way under Strong Magnetic Field, calculated in Perturbative Way Neutrinos are More Scattered and Less Absorbed Neutrinos are More Scattered and Less Absorbed in Direction Parallel to Magnetic Field in Direction Parallel to Magnetic Field ⇒ More Neutrinos are Emitted in Arctic Area ⇒ More Neutrinos are Emitted in Arctic Area Scattering 1.7 % Scattering 1.7 % Absorption 2.2 % at ρ=3ρ Absorption 2.2 % at ρ B =3ρ 0 and T = 20 MeV ⇒ Convection, Pulsar-Kick §5 Summary

23 Estimating Pulsar Kick in Proto-Neutron-Star with Strong Magnetic Field with Strong Magnetic Field B = 2× G ⇒ Perturbative Calculations B = 2× G ⇒ Perturbative Calculations V kick = 300 km/s ( p,n ), 290 km/s (p,n,Λ ) at T = 20 MeV V kick = 300 km/s ( p,n ), 290 km/s (p,n,Λ ) at T = 20 MeV = 180 km/s ( p,n ), 77 km/s (p,n,Λ ) at T = 30 MeV = 180 km/s ( p,n ), 77 km/s (p,n,Λ ) at T = 30 MeV Antarctic Direction Antarctic Direction 400 km/s (Observed ), 280km/s (Lai & Qian) 400 km/s (Observed ), 280km/s (Lai & Qian) Future Plans Fixed Temp. ⇒ Constant Entropy Exact Solution of Dirac Eq. Exact Solution of Dirac Eq. Low Density Contribution is dominant Low Density Contribution is dominant → Landau Level at least for Electron → Landau Level at least for Electron Spin-Spin interaction Poloidal Mag. Field ⇒ Troidal Mag. Field

24 Birth of Proto-neutron Star 24

25 Structure of compact stars… nucleon pasta quark-hadron pasta 25 By D.Page

26 Temperature & lepton fraction in proto-neutron stars T = 40  5 MeV, Y L = 0.4  0.05 by A.Burrows et al. (1986)

Dirac Equation with Magnetic Fields

Dirac Spinor under the Magnetic Field

29 Stability of Magnetic Field in Compact Objects in Compact Objects (Braithwaite & Spruit 2004) Toroidal Magnetic Field is stable !!

EOS of PM1-1

31 §4 Summary EOS of Neutron-Star-Matter with p, n Λ in RMF Appraoch EOS of Neutron-Star-Matter with p, n Λ in RMF Appraoch Cross-Sections of Neutrino Scattering and Absorption Cross-Sections of Neutrino Scattering and Absorption under Strong Magnetic Field, calculated in Perturbative Way under Strong Magnetic Field, calculated in Perturbative Way Neutrinos are More Scattered and Less Absorbed Neutrinos are More Scattered and Less Absorbed in Direction Parallel to Magnetic Field in Direction Parallel to Magnetic Field ⇒ More Neutrinos are Emitted in Arctic Area ⇒ More Neutrinos are Emitted in Arctic Area Scattering 1.7 % Scattering 1.7 % Absorption 2.2 % at ρ=3ρ Absorption 2.2 % at ρ B =3ρ 0 and T = 20 MeV ⇒ Convection, Pulsar-Kick

Magnetic Parts of Scattering Cross-Sections 32

33 Magnetic Parts of Absorption Cross-Sections less absorp. Around θ i =0