Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, 2012 1 KF, Kotera, Olinto 2012, ApJ,

Slides:



Advertisements
Similar presentations
Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
Advertisements

Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Status of Top-Down Models for the Origin of Ultra-High Energy Cosmic Rays I. Observation of ultra-high energy cosmic rays before the Pierre Auger Observatory.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
ASTR112 The Galaxy Lecture 11 Prof. John Hearnshaw 13. The interstellar medium: dust 13.5 Interstellar polarization 14. Galactic cosmic rays 15. The galactic.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Astroparticle Physics : Fermi’s Theories of Shock Acceleration - II
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
XXI st European Cosmic Ray Symposium Kosice 2008 ^ Tadeusz Wibig University of Łódź A. Sołtan Institute for Nuclear Studies Heavy Cosmic Ray Nuclei from.
January 22, Protons (85 %) Nuclei (13%) Electrons/Positrons (2%) Galactic Origin α=2.7.
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
Combined analysis of the spectrum and anisotropies of UHECRs Daniel De Marco Bartol Research Institute University of Delaware.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
What can we learn from the GZK feature? Angela V. Olinto Astronomy & Astrophysics Kavli Institute Cosmol.Phys. Enrico Fermi Institute University of Chicago.
Pasquale Blasi INAF/Arcetri Astrophysical Observatory 4th School on Cosmic Rays and Astrophysics UFABC - Santo André - São Paulo – Brazil.
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
The Pierre Auger Observatory & Ultra High Energy Cosmic Rays Nick Cowan UW Astronomy January 2006.
Ultra high energy cosmic rays: highlights of recent results J. Matthews Pierre Auger Observatory Louisiana State University 19 August August.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Hard X-Rays & Gamma-Rays Induced by Ultra High Energy Proton Acceleration in Cluster Accretion Shocks Susumu Inoue Felix Aharonian Naoshi Sugiyama (NAO.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
Nebular Astrophysics.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
Shock acceleration of cosmic rays Tony Bell Imperial College, London.
La nascita della astronomia dei raggi cosmici? Indicazioni dall' Osservatorio P. Auger Aurelio F. Grillo Teramo 8/05/08.
Status of Cosmic Rays Physics at the Knee Andrea Chiavassa Università and INFN Torino NOW 2006 Otranto 9-16 September 2006.
銀河団における超高エネルギー物理過程 w. Felix Aharonian (MPIK), 杉山直 ( 国立天文台 ) 井上 進 ( 国立天文台 ) w. Günter Sigl, Eric Armengaud (IAP) Francesco Miniati (ETH) ZeV GeV TeV 100.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
Ultra High Energy Cosmic Rays: Strangers Shrouded In Mystery Scott Fleming High Energy Series 24 Feb
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Hajime Takami Institute for the Physics and Mathematics of the Universe, the University of Tokyo High Energy Astrophysics KEK, Tsukuba, Nov. 11,
Propagation of Ultra-high Energy Cosmic Rays in Local Magnetic Fields Hajime Takami (Univ. of Tokyo) Collaborator: Katsuhiko Sato (Univ. of Tokyo, RESCEU)
Telescope Array Experiment: Status and Prospects Pierre Sokolsky University of Utah.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Open Problems with Very High Energy Cosmic Rays Pasquale Blasi National Institute for Astrophysics Arcetri Astrophysical Observatory Firenze, Italy TeV.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio Quarks-08.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
L. G. Sveshnikova1, O. N. Strelnikova, L. A. Kuzmichev, V.S. Ptuskin, V.A. Prosin, E.Korosteleva et al.
The Millisecond Pulsar Contribution to the Rising Positron Fraction Christo Venter 34 th ICRC, The Hague, The Netherlands, 30 July – 6 August 2015 Collaborators:
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Origin of high-energy cosmic rays Vladimir Ptuskin IZMIRAN.
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Cosmic Rays High Energy Astrophysics
Neutrinos produced by heavy nuclei injected by the pulsars in massive binaries Marek Bartosik & W. Bednarek, A. Sierpowska Erice ISCRA 2004.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
E.G.Berezhko, L.T. Ksenofontov Yu.G.Shafer Institute of Cosmophysical Research and Aeronomy Yakutsk, Russia Energy spectra of electrons and positrons,
Propagation and Composition of Ultra High Energy Cosmic Rays
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio UHECR-08.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
CHARGED COSMIC RAYS PHYSICS DETECTION OF RARE ANTIMATTER COMPONENTS LOW ENERGY PARTICLES (>GeV) HE ASTROPHYSICS.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
AGASA results Anisotropy of EHE CR arrival direction distribution M. Teshima ICRR, U of Tokyo.
The propagation of Ultra High Energy Cosmic Rays in the Galactic magnetic fields A. Elyiv B. Hnatyk Astronomical Observatory of Kyiv National University,
Cosmic-ray helium hardening 1. Galactic cosmic ray 3. Cosmic-ray helium hardening 4. Summary Contents Yutaka Ohira and Kunihito Ioka High energy accelerator.
Diffusive shock acceleration: an introduction
Signatures of Protons in UHECR Transition from Galactic to
Haoning He(RIKEN/UCLA/PMO)
Particle Acceleration in the Universe
A Knee in the cosmic ray energy spectrum: A pulsar, supernova origin?
Wei Wang National Astronomical Observatories, Beijing
Presentation transcript:

Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ, 750, 118 KF, Kotera, Olinto 2012, in prep

GRB AGN Clusters Pulsars ✓✓✓✓✓✓✓✓ UHECR Observational Facts Energy Spectrum Chemical Composition TA favors light composition Pedro Facal San Luis, ICRC ✗✗✗✓✗✗✗✓ Abbasi et al Abraham et al. 2010b Kotera & Olinto 2011

Fe-peaked elements stripped off star surface by E-field I Newly Born Pulsars Heavy nuclei abundant Fast rotational speed Strong magnetic field Ruderman & Sutherland 75, Arons & Scharlemann 79, Blasi et. al 00, Arons 03, Bednarek & Bartosik 04, K.F., Kotera, Olinto 12 cosmic ray charge wind acc. efficiency = 10% Injection index too hard! P ~ 0.6 ms 3 B ~ G toy model const velocity column density ejecta energyejecta mass Unipolar induction

E ej =10 52 ergs M ej =10 M sun η=0.1 UHE Protons can hardly escape (except for very dilute envelope) UHE Irons can be accelerated and escape from ms pulsar Ω ~ 10 4 s -1 with B ~ – G Two competing timescales: Time to escape CR Life time To successfully escape: 4 Our successful UHECR source: ms pulsar in core-collapse supernova Upper limit of rotational speed

Simulation of Injected and Escaped Spectrum ProtonIron Pure Protons above 10 EeV cannot escape! ~E -2 Injected escaped lightheavy Monte-Carlo propagation, hadronic interactions with EPOS + CONEX 5 Injected escaped primary escaped secondary

dN/d log B log B [G] dN/d P P [ms] Faucher-Giguère & Kaspi 06 Pulsar distribution in the galaxy Conclusion I: ≲ 0.01% of extragalactic pulsar (normal pulsar birth rate Mpc -3 yr -1 ) can reproduce measured UHECR flux, spectrum and composition (by Auger). 6 Preliminary Upper limit of rotational speed < 0.01% galaxy density = 0.02 Mpc -3

7 Has to be another source! Extragalactic sourcesGalactic sources dN/d log B log B [G] dN/d P P [ms] Faucher-Giguère & Kaspi 06 Galactic Pulsar ? Upper limit of rotational speed SNREG PulsarAGNClusters Spectrum & Composition above the knee GRB SNR, Fe tail E max = eV Intermediate, not Fe/P! EG, Proton Gal Pulsar

SNR, Fe tail E max = eV 8 KF, Kotera, Olinto in prep Conclusion II : Galactic and Extragalactic pulsars can be the dominant source above ~10 16 eV ! Fit with Auger data 3%Fe+22%CNO+40%He+35%P Fit with TA data 23%Fe+22%CNO+40%He+15%P Halo Height B-field coherence length