VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha.

Slides:



Advertisements
Similar presentations
Theories of gravity in 5D brane-world scenarios
Advertisements

Brane-World Inflation
Magnetic Monopoles E.A. Olszewski Outline I. Duality (Bosonization) II. The Maxwell Equations III. The Dirac Monopole (Wu-Yang) IV. Mathematics Primer.
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
Duality and Confinement in the Dual Ginzburg-Landau Superconductor Physics Beyond Standard Model – 1st Meeting Rio-Saclay 2006 Leonardo de Sousa Grigorio.
Vacuum Polarization by Topological Defects with Finite Core
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
1 Most of the type II superconductors are anisotropic. In extreme cases of layered high Tc materials like BSCCO the anisotropy is so large that the material.
Cosimo Stornaiolo INFN-Sezione di Napoli MG 12 Paris July 2009.
Gerard ’t Hooft, Nobel Lecture 1999 infinity What does Renormalizability Mean ??? Understanding Small Distance Behavior !!
COVARIANT FORMULATION OF DYNAMICAL EQUATIONS OF QUANTUM VORTICES IN TYPE II SUPERCONDUCTORS D.M.SEDRAKIAN (YSU, Yerevan, Armenia) R.KRIKORIAN (College.
Cosmological Expansion from Nonlocal Gravity Correction Tomi Koivisto, ITP Heidelberg 1. Outline Introduction 2. Nonlocalities in physics 3. The gravity.
Transverse force on a magnetic vortex Lara Thompson PhD student of P.C.E. Stamp University of British Columbia July 31, 2006.
Complex TransformationsG. ’t Hooft and the Gerard ’t Hooft Spinoza Institute Utrecht Utrecht University.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Gerard ’t Hooft Chennai, November 17, 2009 Utrecht University.
Introduction to Gauge Higgs unification with a graded Lie algebra Academia Sinica, Taiwan Jubin Park (NTHU)  Collaboration with Prof. We-Fu.
Color confinement mechanism and the type of the QCD vacuum Tsuneo Suzuki (Kanazawa Univ.) Collaborators: K.Ishiguro, Y.Mori, Y.Nakamura, T.Sekido ( M.Polikarpov,
Takayuki Nagashima Tokyo Institute of Technology In collaboration with M.Eto (Pisa U.), T.Fujimori (TIT), M.Nitta (Keio U.), K.Ohashi (Cambridge U.) and.
Kirill Polovnikov* Anton Galajinsky* Olaf Lechtenfeld** Sergey Krivonos*** * Laboratory of Mathematical Physics, Tomsk Polytechnic University ** Institut.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Based on Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016 Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
Two Higgs doublets model in gauge-Higgs unification framework Yonsei University Jubin Park (SNUT)  Collaboration with Prof. We-Fu Chang,
Erasmus meeting Heraklon April 2013 Sophia Domokos Carlos Hoyos, J.S.
XII International School-seminar “The Actual Problems of Microworld Physics” July 22 – August 2, 2013, Gomel, Belarus Vacuum polarization effects in the.
An introduction to the Gravity/Fluid correspondence and its applications Ya-Peng Hu College of Science, Nanjing University of Aeronautics and Astronautics,
Stabilizing moduli with flux in brane gas cosmology Jin Young Kim (Kunsan National Univ.) CosPA 2009, Melbourne Based on arXiv: [hep-th]; PRD 78,
Gravitational Dirac Bubbles: Stability and Mass Splitting Speaker Shimon Rubin ( work with Aharon Davidson) Ben-Gurion University of the Negev Miami,
The relationship between a topological Yang-Mills field and a magnetic monopole RCNP, Osaka, 7 Dec Nobuyuki Fukui (Chiba University, Japan) Kei-Ichi.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Yusuke Hama (Univ. Tokyo) Collaborators Tetsuo Hatsuda (Univ. Tokyo)
Confinement mechanism and topological defects Review+ papers by A.V.Kovalenko, MIP, S.V. Syritsyn, V.I. Zakharov hep-lat/ , hep-lat/ , hep-lat/
Type I and Type II superconductivity
Minimal area surfaces in hyperbolic space
The Hierarchy Problem and New Dimensions at a Millimeter Ye Li Graduate Student UW - Madison.
Entanglement Entropy in Holographic Superconductor Phase Transitions Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (April 17,
Localization of gravity on Higgs vortices with B. de Carlos Jesús M. Moreno IFT Madrid Hanoi, August 7th hep-th/
Reinterpretation of Skyrme Theory Y. M. Cho Seoul National Univ.
Holographic Superconductors from Gauss-Bonnet Gravity Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (May 7, 2012) 2012 海峡两岸粒子物理和宇宙学研讨会,
Hawking radiation for a Proca field Mengjie Wang (王梦杰 ) In collaboration with Carlos Herdeiro & Marco Sampaio Mengjie Wang 王梦杰 Based on: PRD85(2012)
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Chiral Dynamics Workshop, JLAB, Aug. 6-10, 2012
Scale invariance and the electroweak symmetry breaking Archil Kobakhidze with R. Foot, K.L. McDonald and R. R. Volkas: Phys. Lett. B655 (2007) Phys.
Color glass condensate in dense quark matter and off-diagonal long range order of gluons A. Iwazaki (Nishogakusha-u) Success of an effective theory of.
Holographic QCD in the medium
Helmholtz International Summer School, Dubna, 24 July 2008 Pion decay constant in Dense Skyrmion Matter Hee-Jung Lee ( Chungbuk Nat’l Univ.) Collaborators.
Holographic cold nuclear matter as dilute instanton gas 1.Introduction 2.Model of Baryon system 3.D8 brane embedding 4.Chemical potential and phase transition.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Spectral function in Holographic superconductor Wen-Yu Wen (NTU) Taiwan String Theory Workshop 2010.
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
Superconductivity and Superfluidity Landau Theory of Phase Transitions Lecture 5 As a reminder of Landau theory, take the example of a ferromagnetic to.
Boundary conditions for SU(2) Yang-Mills on AdS 4 Jae-Hyuk Oh at 2012 workshop for string theory and cosmology, Pusan, Korea. Dileep P. Jatkar and Jae-Hyuk.
Gauge independence of Abelian dual Meissner effect in pure SU(2) QCD Katsuya Ishiguro Y.Mori, T.Sekido, T.Suzuki Kanazawa-univ & RIKEN Joint Meeting of.
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Geometric Monte Carlo and Black Janus Geometries
3 rd Karl Schwarzschild Meeting, Germany 24 July 2017
Thermodynamic Volume in AdS/CFT
Magnetic Monopoles and the Homotopy Groups
Charged black holes in string-inspired gravity models
Fundamentals of Quantum Electrodynamics
Introduction: A review on static electric and magnetic fields
Continuous Systems and Fields
Hysteresis Curves from 11 dimensions
Masakazu Sano Hokkaido University
Włodzimierz Piechocki, Theory Division, INS, Warsaw
Cosmological Scaling Solutions
Presentation transcript:

VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha Jäykkä (Nordita) Kouichi Toda (TPU) NOBUYUKI SAWADO Tokyo University of Science, Japan arXiv: , arXiv: , arXiv: , arXiv: At Miami 2012: A topical conference on elementary particles, astrophysics, and cosmology, December, Fort Lauderdale, Florida 19 December, 2012

Objects of Yang-Mills theory (i)Gauge + Higgs composite models Abelian vortex (in U(1)) Abrikosov vortex, graphene, cosmic string, Brane world, etc. ‘tHooft Polyakov monopole GUT, Nucleon catalysis ( Callan-Rubakov effect), etc. The Skyrme-Faddeev Hopfions, vortices Glueball?, Abrikosov vortex?, Branes? (ii)Pure Yang-Mills theory Instantons In the Cho-Faddeev-Niemi-Shabanov decomposition Monopole loop Condensates in a dual superconductivity Confinement N.Fukui,et.al.,PRD86(2012)065020,``Magnetic monopole loops generated from two-instanton solutions: Jackiw-Nohl-Rebbi versus 't Hooft instanton”

Exotic structures of the vortex…… M.N.Chernodub and A..S. Nedelin, PRD81,125022(2010) ``Pipelike current-carrying vortices in two-component condensates’’ P.J.Pereira,L.F.Chibotaru, V.V.Moshchalkov, PRB84, (2011) ``Vortex matter in mesoscopic two-gap superconductor square’’ Semi-local strings The Ginzburg-Landau equation

Summary We got the integrable and also the numerical solutions of the vortices in the extended Skyrme Faddeev Model. A special form of potential is introduced in order to stabilize and to obtian the integrable vortex solutions. We begin with the basic formulation.

Cho-Faddeev-Niemi-Shabanov (CFNS) decomposition electric magnetic remaining terms ×4 ― 6 = 6Degrees of freedom 6 L.D. Faddeev, A.J. Niemi, Phy.Rev.Lett.82 (1999) 1624, ``Partially dual variables in SU(2) Yang-Mills theory” ``renormalization group time’’ H. Gies, Phys. Rev. D63, (2001),``Wilsonian effective action for SU(2) Yang-Mills theory with Cho-Faddeev-Niemi -Shabanov decomposition The Gies lagrangian

Lagrangian (in Minkowski space) Sterographic project Static hamiltonian Positive definite for The integrability: the analytical vortex solutions The equation of the vortex

The zero curvature condition The equation becomes Traveling wave vortex The vortex solution in the integrable sector L.A.Ferreira, JHEP05(2009)001,``Exact vortex solutions in an extended Skyrme-Faddeev model” O.Alvarez,LAF,et.al,PPB529(1998)689,``A new approach to integrable theories in any dimension” One gets the infinite number of conserved quantity Additional constraint

The equation The solution has of the form: Ansatz

Derrick’s scaling argument G.H.Derrick, J.Math.Phys.5,1252 (1964), ``Comments on nonlinear wave equations as models for elementary particles’’ Scaling: Consider a model of scalar field: We need to introduce form of a potential to stabilize the solution.

The baby-skyrmion potential Plug into the equation it is written as Assume the zero curvature condition

Analytical solutions for n = 1, 2

The energy of the static/traveling wave vortex

The infinite number of conserved current Thus the current is always conserved: And the equation of motion is written as

The charge per unit length: The components:

Broken axisymmetry of the solution Symmetric: The baby-skyrmion exhibits a non-axisymmetric solution depending on a choice of potential I.Hen et. al, Nonlinearity 21 (2008) 399

A repulsive force between the core of the vortices might appear It might be similar with the force between the Abrikosov vortex. Erick J.Weinberg, PRD19,3008 (1979), ``Multivortex solutions of the Ginzburg-Landau equations” The vortex matter/lattice structure is observed.

Summary We got the integrable and the numerical solutions of the vortices in the extended Skyrme Faddeev Model. A special form of potential is introduced in order to stabilize and to obtain the integrable vortex solutions.

Thank you ! Tanzan Jinja shrine,Japan, 16 Nov.,2012 Lago Mar Resort, USA, 17 Dec.,2012

The Skyrme-Faddeev model L.Faddeev, A.Niemi, Nature (London) 387, 58 (1997), ``Knots and particles’’ R.A.Battye, P.M.Sutcliffe, Phys.Rev.Lett.81,4798(1998) Lagrangian Static hamiltonian Positive definite for

Boundary conditions Coordinates: Hopfions(closed vortex) Hopf charge L.A.Ferreira, NS, et.al., JHEP11(2009)124, ``Static Hopfions in the extended Skyrme-Faddeev model” Axially symmetric ansatz Non-axisymmetric case: D.Foster, arXiv:

(m, n) = (1, 1)(1, 2)(2, 1) (m, n) = (1, 3) (m, n) = (1, 4) (2, 2)(4, 1) Hopf charge density (3, 1)

corresponds to the zero curvature condition Dimensionless energy, Integrability The solution is close to the Integrable sector, but not exact.