Rosetta_CD\PR\what_is_RS.ppt, 22.12.2015 16:26AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 Basics S.Tellmann,

Slides:



Advertisements
Similar presentations
Rosetta_CD\PR\what_is_RS_v4.ppt, :45AM, 1 Mars Data Workshop Mars Express Radio Science MaRS Data Products, Part II Martin Pätzold, Silvia.
Advertisements

Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
The Asymptotic Ray Theory
1 Ionospheres of the Terrestrial Planets Stan Solomon High Altitude Observatory National Center for Atmospheric Research
X-Ray Measurements of the Mass of M87 D. Fabricant, M. Lecar, and P. Gorenstein Astrophysical Journal, 241: , 15 October 1980 Image:
Ray Tracing A radio signal will typically encounter multiple objects and will be reflected, diffracted, or scattered These are called multipath signal.
1 Centrum Badań Kosmicznych PAN, ul. Bartycka 18A, Warsaw, Poland Vertical temperature profiles in the Venus.
“You are required to assist on the Atmospheric Structure Reconstruction using the Beagle 2 Entry, Descent, and Landing Accelerometer” Paul Withers
Estimating Uncertainties in Measurements of Atmospheric Properties by Radio Occultations Paul Withers Center for Space Physics, Boston University
Radio Occultation Atmospheric Profiling with Global Navigation Satellite Systems (GNSS)
IPPW- 9 Royal Observatory of Belgium 20 June Von Karman Institute for Fluid Dynamics Obtaining atmospheric profiles during Mars entry Bart Van Hove.
2 nd GRAS SAF User Workshop 1 Radio Occultation and Multipath Behavior Kent Bækgaard Lauritsen Danish Meteorological Institute (DMI), Denmark 2 nd GRAS.
GPS / RO for atmospheric studies Dept. of Physics and Astronomy GPS / RO for atmospheric studies Panagiotis Vergados Dept. of Physics and Astronomy.
Review Doppler Radar (Fig. 3.1) A simplified block diagram 10/29-11/11/2013METR
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
1 Robert Schaefer and Joe Comberiate for the SSUSI Team Robert SchaeferJoe Comberiate (240) (240)
Radio Occultation From GPS/MET to COSMIC.
Rosetta_CD\PR\what_is_RS.ppt, :39AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 The retrieval S.Tellmann,
GPS radio occultation Sean Healy DA lecture, 28th April, 2008.
EM propagation paths 1/17/12. Introduction Motivation: For all remote sensing instruments, an understanding of propagation is necessary to properly interpret.
Random Media in Radio Astronomy Atmospherepath length ~ 6 Km Ionospherepath length ~100 Km Interstellar Plasma path length ~ pc (3 x Km)
Stellar structure equations
Different options for the assimilation of GPS Radio Occultation data within GSI Lidia Cucurull NOAA/NWS/NCEP/EMC GSI workshop, Boulder CO, 28 June 2011.
EGU General Assembly 2013, 7 – 12 April 2013, Vienna, Austria This study: is pioneer in modeling the upper atmosphere, using space geodetic techniques,
Pioneer Anomaly Test – Jonathan Fitt 1 Design Assessment of Lunar, Planetary and Satellite Ranging Applied to Fundamental Physics Jonathan Fitt Friday,
The Doppler Wind Experiment in the Optical Communications Era Kamal Oudrhiri, Sami Asmar and Bruce Moision June 20, 2013 International Planetary Probe.
Vertical Wavenumber Spectrum of Gravity Waves at the Northern High Latitude Region in the Martian Atmosphere Hiroki Ando.
Linear and nonlinear representations of wave fields and their application to processing of radio occultations M. E. Gorbunov, A. V. Shmakov Obukhov Institute.
SI Traceability Applied to GPS RO October 22, 2008 CLARREO Workshop Oct 2008 AJM/JPL 1 SI Traceability Applied To GPS Radio Occultation A. J. Mannucci,
ROSA – ROSSA Validation results R. Notarpietro, G. Perona, M. Cucca
The ionosphere of Mars never looked like this before Paul Withers Boston University Space Physics Group meeting, University of Michigan.
Recent developments for a forward operator for GPS RO Lidia Cucurull NOAA GPS RO Program Scientist NOAA/NWS/NCEP/EMC NCU, Taiwan, 16 August
Ozone problem Calculate the dependence of O 3 and O with altitude. In class I only showed qualitatively Use an O 2 density of n 2 (z) = n 2 (0)exp[-z/H].
1 Weather Radar the WSR-88D Information taken from the Federal Meteorological Handbook No. 11 Part B – Doppler Radar Theory and Meteorology June 1990 Part.
DMRT-ML Studies on Remote Sensing of Ice Sheet Subsurface Temperatures Mustafa Aksoy and Joel T. Johnson 02/25/2014.
Climate Monitoring with Radio Occultation Data Systematic Error Sources C. Rocken, S. Sokolovskiy, B. Schreiner, D. Hunt, B. Ho, B. Kuo, U. Foelsche.
Vertical Wavenumber Spectra of Gravity Waves in the Venus and Mars Atmosphere *Hiroki Ando, Takeshi Imamura, Bernd Häusler, Martin Pätzold.
Doc.: IEEE /0431r0 Submission April 2009 Alexander Maltsev, Intel CorporationSlide 1 Polarization Model for 60 GHz Date: Authors:
Methods for describing the field of ionospheric waves and spatial signal processing in the diagnosis of inhomogeneous ionosphere Mikhail V. Tinin Irkutsk.
-1- Coronal Faraday Rotation of Occulted Radio Signals M. K. Bird Argelander-Institut für Astronomie, Universität Bonn International Colloquium on Scattering.
A new concept radio occultation experiment to study the structure of the atmosphere and determine the plasma layers in the ionosphere. Gavrik A.L. Kotelnikov.
General Frequency Ranges Microwave frequency range –1 GHz to 40 GHz –Directional beams possible –Suitable for point-to-point transmission –Used for satellite.
2 nd GRAS-SAF USER WORKSHOP Assimilation of GPS radio occultation measurements at DAO (soon GMAO) P. Poli 1,2 and J. Joiner 3 Data Assimilation Office.
Hirophysics.com PATRICK ABLES. Hirophysics.com PART 1 TIME DILATION: GPS, Relativity, and other applications.
Mars Data Workshop Mars Express Radio Science MaRS
1 Volatile Exchange on Mars Maria T. Zuber MIT David E. Smith NASA/GSFC 16 th International Workshop on Laser Ranging Poznan, Poland 13 October 2008 NASA/MRO/HiRISE.
Studying the Venus terminator thermal structure observed by SOIR/VEx with a 1D radiative transfer model A. Mahieux 1,2,3, J. T. Erwin 3, S. Chamberlain.
Transient response of the ionosphere to X-ray solar flares Jaroslav Chum (1), Jaroslav Urbář (1), Jann-Yenq Liu (2) (1) Institute of Atmospheric Physics,
Electron density profile retrieval from RO data Xin’an Yue, Bill Schreiner  Abel inversion error of Ne  Data Assimilation test.
Data Assimilation Retrieval of Electron Density Profiles from Radio Occultation Measurements Xin’an Yue, W. S. Schreiner, Jason Lin, C. Rocken, Y-H. Kuo.
Towards a Robust and Model- Independent GNSS RO Climate Data Record Chi O. Ao and Anthony J. Mannucci 12/2/15CLARREO SDT Meeting, Hampton, VA1 © 2015 California.
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Antennas and Propagation.
Ionospheric characteristics above martian crustal magnetic anomalies Paul Withers, M Mendillo, H Rishbeth, D Hinson, and J Arkani-Hamed Abstract #33.02.
Earth Science Applications of Space Based Geodesy DES-7355 Tu-Th 9:40-11:05 Seminar Room in 3892 Central Ave. (Long building) Bob Smalley Office: 3892.
Lecture 8: Stellar Atmosphere 4. Stellar structure equations.
Lutetia Flyby Rosetta Radio Science Investigations RSI
TIMN seminar GNSS Radio Occultation Inversion Methods Thomas Sievert September 12th, 2017 Karlskrona, Sweden.
Planetary Ionospheres
Introduction to Atmospheric Science at Arecibo Observatory
Ionospheric Effect on the GNSS Radio Occultation Climate Data Record
Retrieval Analysis and Methodologies in Atmospheric Limb Sounding Using the GNSS Radio Occultation Technique PhD Defence by Stig Syndergaard.
Exploring the ionosphere of Mars
Exploring the ionosphere of Mars
Comparisons and simulations of same-day observations of the ionosphere of Mars by radio occultation experiments on Mars Global Surveyor and Mars Express.
Effects and magnitudes of some specific errors
Challenges of Radio Occultation Data Processing
Open Loop Tracking of GPS Radio Occultation for LEOs
Propagation Effects on Communication Links
Planetary Radio Interferometry and Doppler Experiment (PRIDE)
The Vertical Structure of the Martian Ionosphere
Presentation transcript:

Rosetta_CD\PR\what_is_RS.ppt, :26AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 Basics S.Tellmann, M.Pätzold ESAC June 2008

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 2 Overview LEVEL 3: The Bending Angle & the Rayparameter The Refractive Index/Refractivity & Radius LEVEL 4: The Neutral Atmosphere Density Temperature Pressure The Ionosphere The Electron Density The Twoway Problem

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 3 Earth Occultations Ionosphere Mars Neutral Atmosphere f rec w/o f = f +  f rec w/o send MEX dop MEX f : signal transmitted from MEX f : signal received w/o atmosphere  f : classical Doppler shift MEX send w/o rec dop

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 4 Earth Occultations Ionosphere Mars Neutral Atmosphere f rec w/o f = f +  f rec w/o send MEX dop MEX f : signal transmitted from MEX f : signal received w/o atmosphere  f : classical Doppler shift f : signal received with atmosphere  f : frequency shift from atmosphere MEX send w/o rec dop rec with f = f +  f +  f +  f rec with MEX send dopiono atm rec with f atm   bending angle Ray Asymptote

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 5 Bending Angle & Rayparameter Retrieval based on geometrical optics [Fjeldbo et al., 1971]  : bending angle a : rayparameter

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 6 Bending Angle & Rayparameter [Fjeldbo et al., 1971] Basic Idea: Input: Position of Spacecraft, Groundstation & Mars Velocity of Spacecraft, Groundstation & Mars

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 7 Doppler Effect For v Earth << v S/C :

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 8 The Refractivity Calculation of Refractive index from bending angle and rayparameter Reconstruction of a two-dimensional radial symmetric distribution f(r) from its projection g(y) inverse Abeltransform The twodimensional function is given by: [Pretzler et al., 1992] [Jenkins, 1992] Abel transform: Inverse Abel transform:

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 9 The Refractivity Inverse Abeltransform: Integration of bending angle and rayparameter over all layers already traversed Refractive Index: n1n1 n2n2 n3n3 n4n4

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 10 The Radius (ray peripasis) r : radius a : rayparameter n : refractive index

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 11 Refractivity Ionosphere: Negative Refractivity higher than ~ 80 km altitude approx km radius Transition Region: no significant bending approx. 60 km – 80 km altitude approx km – 3480 km Neutral Atmosphere: Positive Refractivity up to approx. 50 km altitude up to approx km radius Neutral Atmosphere Ionosphere Ionopause Transition Region Refractivity

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 12 Retrieval of atmospheric parameter f 0 : Radio link frequency N e : electron density C 1, C 3 : atm. constants k : Boltzman constant n: neutral number density Neutral AtmosphereIonosphere Refractivity  (h):

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 13 The Ionosphere f 0 : Radio link frequency N e : electron density C 3 : atm. constant Neutral AtmosphereIonosphere Refractivity  (h) in Ionosphere (h>60km):

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 14 The Electron Density f 0 : Radio link frequency N e : electron density C 3 = m 3 /s 2 refractivity is ~1/ f 2 S-band is more sensitive to electron density than X-band

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 15 The Neutral Atmosphere Neutral AtmosphereIonosphere Refractivity  (h) in neutral atmosphere (h<50km): Second term << first term C 1 : atm. constants k : Boltzman constant n: neutral number density

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 16 Neutral Number Density: Pressure (assuming hydrostatic equilibrium): Temperature: ideal gaslaw Neutral Atmosphere

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 17 The Twoway Problem

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 18 Ionosphere Mars Neutral Atmosphere f rec w/o f = f +  f rec w/o send MEX dop MEX f : signal transmitted from MEX f : signal received w/o atmosphere  f : classical Doppler shift f : signal received with atmosphere  f : frequency shift from atmosphere MEX send w/o rec dop rec with f = f +  f +  f +  f rec with MEX send dopiono atm rec with f atm   bending angle So far assumed: Oneway

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 19 But in Realty: Twoway Radio Link Ionosphere Mars Neutral Atmosphere f f = f +  f recsend Earth MEX up Earth send Up: X-band: 7.1 GHz

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 20 Ionosphäre Mars Neutralatmosphäre f f = f +  f recsend Earth MEX up f = { f +  f }· k MEX send Earth send up f · k MEX rec The Twoway Problem Up: X-band: 7.1 GHz

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 21 Ionosphere  Mars Neutral Atmosphere f f = f +  f recsend Earth MEX f = k· f + k·  f +  f Earth rec Earth send updown f Earth rec MEXup f = { f +  f }· k MEX send Earth send up The Twoway Problem Up: X-band: 7.1 GHz Down: X-band: 8.4 GHz S-band: 2.3 GHz

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 22 The Twoway Problem Bending of Radio link on Uplink & Downlink Difficult to seperate effects from Uplink & Downlink Different dependency on Radio frequency in Ionosphere and Neutral atmosphere Neutral Atmosphere: Independent of frequency Ionosphere:  ~ 1/ f 2

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 23 The Twoway Problem Different frequencies on Uplink and Downlink Ionospheric Bending is ~ 1/f 2 Different bending on Uplink & Downlink Bending in Neutral Atmosphere independent of frequency Retrieval of bending angle and rayparameter is exclusively dependent on measurement geometry!!!! No frequency dependeny taken into account! Solution: Retrieve Ionosphere and Neutral Atmosphere separately

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 24 Twoway Problem: The Ionosphere Best Solution: Use Differential Doppler (~ pure Oneway S-band Downlink) All effects ~ f are subtracted due to the use of to coherent frequencies Other solution: Make an iterative solution: solve for „mean Ionosphere“ Calculate electron density refractivity for Uplink & Downlink Make Raytracing: calculate bending in this „assumed“ atmosphere Compare solution of ray tracing with true residual……

Rosetta_CD\PR\what_is_RS_v4.ppt, :26AM, 25 Twoway Problem: Neutral Atmosphere Treat Uplink and Downlink explicitely with basic formulas from Oneway Solve Uplink & Downlink in the way already described Literature: Lipa, B. and Tyler, G.L., „Statistical and Computational Uncertainties in Atmospheric Profiles from Radio Occultation: Mariner 10 at Venus“, Icarus 39, 192 – 208. Jenkins et al., „Radio Occultation Studies of the Venus Atmosphere with the Magellan Spacecraft“, Icarus 110, 79 – 49.