Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 ERROR RECOGNITION and IMAGE ANALYSIS Ed Fomalont.

Slides:



Advertisements
Similar presentations
5th Intensive Course on Soil Micromorphology Naples th - 14th September Image Analysis Lecture 5 Thresholding/Segmentation.
Advertisements

5th Intensive Course on Soil Micromorphology Naples th - 14th September Image Analysis Lecture 5 Thresholding/Segmentation.
A Crash Course in Radio Astronomy and Interferometry: 4
A Crash Course in Radio Astronomy and Interferometry: 2
Basics of mm interferometry Turku Summer School – June 2009 Sébastien Muller Nordic ARC Onsala Space Observatory, Sweden.
November 12, 2013Computer Vision Lecture 12: Texture 1Signature Another popular method of representing shape is called the signature. In order to compute.
Ray Norris, Jamie Stevens, et al. Deep CABB observations of ECDFS ( Extended Chandra Deep Field South )
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Whoever North American.
SKADS: Array Configuration Studies Implementation of Figures-of-Merit on Spatial-Dynamic-Range Progress made & Current status Dharam V. Lal & Andrei P.
GG450 April 22, 2008 Seismic Processing.
Interferometric Spectral Line Imaging Martin Zwaan (Chapters of synthesis imaging book)
A rough guide to radio astronomy and its use in lensing studies Simple stuff other lecturers may assume you know (and probably do)
Image Analysis Jim Lovell ATNF Synthesis Imaging Workshop May 2003.
6/9/2015Digital Image Processing1. 2 Example Histogram.
Image Analysis Jim Lovell ATNF Synthesis Imaging Workshop September 2001.
Chapter 1 Ways of Seeing. Ways of Seeing the Atmosphere The behavior of the atmosphere is very complex. Different ways of displaying the characteristics.
1 Synthesis Imaging Workshop Error recognition R. D. Ekers Narrabri, 20 Sep 2006.
Lecture 4 Measurement Accuracy and Statistical Variation.
1 Synthesis Imaging Workshop Error recognition R. D. Ekers Narrabri, 14 May 2003.
Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 Cross Correlators Walter Brisken.
Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002.
CSIRO; Swinburne Error Recognition Emil Lenc University of Sydney / CAASTRO CASS Radio Astronomy School 2012 Based on lectures given previously.
Interferometry Basics
Detecting Electrons: CCD vs Film Practical CryoEM Course July 26, 2005 Christopher Booth.
Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008 ERROR RECOGNITION & IMAGE ANALYSIS Ed Fomalont (NRAO)
Tenth Summer Synthesis Imaging Workshop University of New Mexico, June 13-20, 2006 ERROR RECOGNITION & IMAGE ANALYSIS Ed Fomalont (NRAO)
J.M. Wrobel - 19 June 2002 SENSITIVITY 1 SENSITIVITY Outline What is Sensitivity & Why Should You Care? What Are Measures of Antenna Performance? What.
Non-imaging Analysis and Self- calibration Steven Tingay ATNF Astronomical Synthesis Imaging Workshop Narrabri, 24 – 28 September, 2001.
Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 Mosaicing Tim Cornwell.
Wideband Imaging and Measurements ASTRONOMY AND SPACE SCIENCE Jamie Stevens | ATCA Senior Systems Scientist / ATCA Lead Scientist 2 October 2014.
Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 Sensitivity Joan Wrobel.
Survey Quality Jim Condon NRAO, Charlottesville. Survey Qualities Leiden 2011 Feb 25 Point-source detection limit S lim Resolution Ω s Brightness sensitivity.
HIFI Tutorial 3: Getting some basic science out A.P.Marston ESAC 27 June 2013.
Twelfth Synthesis Imaging Workshop 2010 June 8-15 Advanced Calibration Techniques Mark Claussen NRAO/Socorro (based on earlier self-calibration lectures)
S EGMENTATION FOR H ANDWRITTEN D OCUMENTS Omar Alaql Fab. 20, 2014.
S.T. MyersEVLA Advisory Committee Meeting September 6-7, 2007 EVLA Algorithm Research & Development Steven T. Myers (NRAO) CASA Project Scientist with.
Which dipoles to use to optimize survey speed? –What tapering? –Trade-off between sensitivity, FOV and low side-lobe levels –Station beam stability, pointing.
Authors: Sriram Ganapathy, Samuel Thomas, and Hynek Hermansky Temporal envelope compensation for robust phoneme recognition using modulation spectrum.
Time series Decomposition Farideh Dehkordi-Vakil.
Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 Spectral Line II John Hibbard.
Fundamental limits of radio interferometers: Source parameter estimation Cathryn Trott Randall Wayth Steven Tingay Curtin University International Centre.
Wide-field imaging Max Voronkov (filling up for Tim Cornwell) Software Scientist – ASKAP 1 st October 2010.
PACS NHSC Data Processing Workshop – Pasadena 10 th - 14 th Sep 2012 Measuring Photometry from SPIRE Observations Presenter: David Shupe (NHSC/IPAC) on.
02/6/ jdr1 Interference in VLBI Observations Jon Romney NRAO, Socorro ===================================== 2002 June 12.
Мulti-frequency VLA observations of M87. Observations’ parameters Test VLA observations (configuration D) of M87 (RA=12:28, Dec=12:40) took place on November.
Phase Referencing Using More Than One Calibrator Ed Fomalont (NRAO)
1 Research Question  Can a vision-based mobile robot  with limited computation and memory,  and rapidly varying camera positions,  operate autonomously.
Observing Strategies at cm wavelengths Making good decisions Jessica Chapman Synthesis Workshop May 2003.
NASSP Masters 5003F - Computational Astronomy Lecture 14 Reprise: dirty beam, dirty image. Sensitivity Wide-band imaging Weighting –Uniform vs Natural.
Tenth Summer Synthesis Imaging Workshop University of New Mexico, June 13-20, 2006 High Dynamic Range Imaging Craig Walker.
EE 7740 Fingerprint Recognition. Bahadir K. Gunturk2 Biometrics Biometric recognition refers to the use of distinctive characteristics (biometric identifiers)
The Australia Telescope National Facility Ray Norris CSIRO ATNF.
Autonomous Robots Vision © Manfred Huber 2014.
MOS Data Reduction Michael Balogh University of Durham.
Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 High Dynamic Range Imaging Craig Walker.
Error Recognition in Interferometric Imaging A Lecture Presented at the 8 th Synthesis Imaging Summer School Socorro, New Mexico 20 June 2002 Steven T.
L. Young, Synthesis Imaging Summer School, 19 June Spectral Line I Lisa Young This lecture: things you need to think about before you observe After.
Machine Vision Edge Detection Techniques ENT 273 Lecture 6 Hema C.R.
Мulti-frequency Algorithm at Russian Software Package ASL L. Kogan, S. Likhachev, N. Kardashev, E. Fomalont, F. Owen, E. Greisen.
XBSM Analysis - Dan Peterson Review of the optics elements: Pinhole (“GAP”), FZP, Coded Aperture Extracting information from the GAP what is the GAP width?
WIDE-FIELD IMAGING IN CLASSIC AIPS Eric W. Greisen National Radio Astronomy Observatory Socorro, NM, USA.
M.P. Rupen, Synthesis Imaging Summer School, 18 June Cross Correlators Michael P. Rupen NRAO/Socorro.
In conclusion the intensity level of the CCD is linear up to the saturation limit, but there is a spilling of charges well before the saturation if.
following the lectures of Ron Ekers (and others)
Imaging and Calibration Challenges
Wide-field imaging Max Voronkov (filling up for Tim Cornwell)
ERROR RECOGNITION & IMAGE ANALYSIS
Image Error Analysis Fourier-domain analysis of errors.
Basic theory Some choices Example Closing remarks
Error Recognition in Interferometric Imaging
Presentation transcript:

Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 ERROR RECOGNITION and IMAGE ANALYSIS Ed Fomalont

2 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 PREAMBLE TO ERROR RECOGNITION and IMAGE ANALYSIS Why are these two topics in the same lecture? Error recognition is used to determine defects in the data and image and to fix the problems. Image analysis describes the almost infinite ways in which useful information and parameters can be extracted from the image. Perhaps, these two topics are related by the reaction that one has when looking an image after ‘good’ calibration, editing, imaging, self-calibration. If the reaction is

3 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 POSSIBLE IMAGE PROBLEMS Rats!! This can’t be right. This is either the most remarkable radio source ever, or I have made an error in making the image. Image rms, compared to the expected rms, is an important criterion.

4 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 HIGH QUALITY IMAGE Great!! After lots of work, I can finally analyze this image and get some interesting scientific results. (previous: 2 antennas with 10% error, 1 with 5 deg error and a few outlier points)

5 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 WHAT TO DO NEXT So, the first serious display of an image leads one – to inspect again and clean-up the data with repetition of some or all of the previous reduction steps. or to image analysis and obtaining scientific results from the image. But, first a digression on data and image display.

6 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE DISPLAYS (1) The image is stored as numbers depicting the intensity of the emission in a rectangular-gridded array. (useful over slow links)

7 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE DISPLAYS (2) Contour Plot Profile Plot These plots are easy to reproduce in printed documents Contour plots give good representation of faint emission. Profile plots give a good representation of the ‘mosque-like’ bright emission.

8 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE DISPLAYS (3) Contour Plot Profile Plot TV-based displays are most useful and interactive: Grey-scale shows faint structure, but not good for high dynamic range. Color displays most flexible, especially for multiple images. Grey-scale Display Color Display

9 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 DATA DISPLAYS(1) List of u-v Data

10 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 DATA DISPLAYS(2) Visibility Amplitude versus Projected uv spacing General trend of data. Useful for relatively strong Sources. (Triple source model with large component in middle, see Non-imaging lecture)

11 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 DATA DISPLAYS(3) Plot of Visbility amplitude and Phase versus time for various baselines Good for determining the continuity of the data. should be relatively smooth with time Short baseline Long baseline

12 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 DATA DISPLAYS(4) Color Display of Visibility amplitude of each baseline with time. Usually interactive editing is possible. Example later. Baselines  |||TIME||||||TIME|||

13 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 USE IMAGE or UV-PLANE? Errors obey Fourier transform relations: Narrow features transform to wide features (vice-versa) Symmetries: amplitude errors  symmetric features in image phase errors  asymmetric features in image Orientations in (u-v)  orthogonal orientation in image See Myers 2002 lecture for a graphical representation of (u-v) plane and sky transform pairs.

14 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 USE IMAGE or UV-PLANE? Errors easier to find if error feature is narrow: —Obvious outlier data (u-v) data points hardly affect image. 100 bad points in 100,000 data points is an 0.1% image error (unless the bad data points are 1 million Jy) USE DATA to find problem —Persistent small errors like a 5% antenna gain calibration are hard to see in (u-v) data (not an obvious outlier), but will produce a 1% effect in image with specific characteristics. USE IMAGE to find problem

15 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 ERROR RECOGNITION IN THE U-V PLANE Editing obvious errors in the u-v plane Mostly consistency checks assuming that the visibility cannot change much over a small change in u-v spacing. Also, double check gains and phases from calibration processes. These values should be relatively stable. See Summer school lecture notes in 2002 by Myers See ASP Vol 180, Ekers, Lecture 15, p321

16 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 Editing using Visibility Amplitude versus uv spacing Nearly point source Lots of drop-outs Some lowish points Could remove all data less than 0.6 Jy, but Need more inform- ation. A baseline- time plot is better.

17 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 Editing using Time Series Plots Mostly occasional drop- outs. Hard to see, but drop outs and lower points at the beginning of each scan. (aips, aips++ task QUACK) Should apply same editing to all sources, even if too weak to see signal.

18 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 Editing noise-dominated Sources No source structure information available. All you can do is remove outlier points above 0.3 Jy. Precise level not important as long as large outliers removed. Other points consistent with noise.

19 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 Edit out scan in regions of high rms. Should edit Intervening data? Useful display for only one source at a time. RMS Phase with Time/Baseline Display

20 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 ERROR RECOGNITION IN THE IMAGE PLANE Editing from obvious errors in the image plane Any structure that looks ‘non-physical’, egs. stripes, rings, symmetric or anti-symmetric features. Build up experience from simple examples. Also lecture on high-dynamic range imaging, wide- field imaging have similar problems.

21 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 Example Error % amp error all ant 1 time rms 2.0 mJy Also instrumental errors and real source variability 6-fold symmetric pattern due to VLA “Y” Point source process normally self-cal, etc. introduce errors clean no errors: max 3.24 Jy rms 0.11 mJy 13 scans over 12 hours

22 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 Example Error deg phase error 1 ant 1 time rms 0.49 mJy anti-symmetric ridges 20% amp error 1 ant 1 time rms 0.56 mJy symmetric ridges

23 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 Example Error – 3 (All from Myers 2002 lecture) 10 deg phase error 1 ant all times rms 2.0 mJy rings – odd symmetry 20% amp error 1 ant all times rms 2.3 mJy rings – even symmetry NOTE: 10 deg phase error equivalent to 20% amp error. That is why phase variations are generally more serious

24 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 DECONVOLUTION ERRORS Even if data is perfect, image errors will occur because of poor deconvolution. This is often the most serious problem associated with extended sources or those with limited (u-v) coverage The problems can usually be recognized, if not always fixed. Get better (u-v) coverage! Also, 3-D sky distortion, chromatic aberration and time- smearing distort the image (other lectures).

25 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 DIRTY IMAGE and BEAM (point spread function) Dirty Beam Dirty Image Source Model The dirty beam has large, complicated side-lobe structure (poor u-v coverage). It is hard to recognize the source in the dirty image. An extended source exaggerates the side-lobes.

26 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 CLEANING WINDOW SENSITIVITY Tight Box Middle Box Big Box Dirty Beam Small box around emission region Must know structure well to box this small. Reasonable box size for source Box whole area. Very dangerous with limited (u-v) coverage. Spurious emission is always associated with higher sidelobes in dirty-beam.

27 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 CLEAN INTERPOLATION PROBLEMS Measured (u-v) F.T. of Good image F.T. of Bad image Actual amplitude of sampled (u-v) points Clean effectively interpolated the sampled-data into the (u-v) plane. Clean was fooled by the orientation of the (u-v) coverage Both the good image and the bad image fit the data at the sampled points. But, the interpolation between points is different.

28 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 SUMMARY OF ERROR RECOGNITION Source structure should be ‘reasonable’, the rms image noise as expected, and the background featureless. If not, UV data Look for outliers in u-v data using several plotting methods. Check calibration gains and phases for instabilities. IMAGE plane Are defects related to possible data errors? Are defects related to possible deconvolution problems?

29 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE ANALYSIS Input: Well-calibrated Data-base and High Quality Image Output: Parameterization and Interpretation of Image or a set of Images This is very open-ended Depends on source emission complexity Depends on the scientific goals Examples and ideas are given. Many software packages, besides AIPS and AIPS++ (eg. IDL) are available.

30 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE ANALYSIS OUTLINE Multi-Resolution of radio source. Parameter Estimation of Discrete Components Image Comparisons Positional Information

31 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE AT SEVERAL RESOLUTIONS Natural Uniform Low Different aspects of source can be seen at the different resolutions, shown by the ellipse at the lower left. SAME DATA USED FOR ALL IMAGES For example, the outer components are very small. There is no extended emission beyond the three main components.

32 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 PARAMETER ESTIMATION Parameters associated with discrete components Fitting in the image –Assume source components are Gaussian-shaped –Deep cleaning restores image intensity with Gaussian-beam –True size * Beam size = Image size, if Gaussian-shaped. Hence, estimate of true size is relatively simple. Fitting in (u-v) plane –Better estimates for small-diameter sources –Can fit to any source model (e.g. ring, disk) Error estimates of parameters –Simple ad-hoc error estimates –Estimates from fitting programs

33 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE FITTING AIPS task: JMFIT AIPS++ tool imagefitter

34 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 (U-V) DATA FITTING DIFMAP has best algorithm Fit model directly to (u-v) data Contour display of image Look at fit to model Ellipses show true size

35 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 COMPONENT ERROR ESTIMATES P = Component Peak Flux Density  = Image rms noise P/  = signal to noise = S B = Synthesized beam size W = Component image size  P = Peak error =   X = Position error = B / 2S  W= Component image size error = B / 2S  = True component size = (W 2 – B 2 ) 1/2  = Minimum component size = B / S 1/2 Notice: Minimum component detectable size decreases only as S 1/2.

36 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE COMBINATION – LINEAR POLARIZATION Recent work on Fornax-A Multi-purpose plot Contour – I Pol Grey scale – P Pol Line segments – P angle AIPS++ and AIPS have Many tools for polarization Analysis. I Q U

37 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 COMPARISON OF RADIO-X/RAY IMAGES Contours of radio intensity at 5 GHz of Fornax A with 6” resolution. Dots represent X-ray Intensity from four energies between 0.7 and 11.0 KeV from Chandra. Pixel separation is 0.5”. Color intensity represents X-ray intensity – convolution of above dots image to 6” Color represents hardness of X-ray (average frequency)

38 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 SPECTRAL LINE REPRESENTATIONS Integrated Mean Velocity Flux Velocity Dispersion (Spectral line lecture by Hibbard) False color intensity Dim = Blue  Bright = Red

39 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 IMAGE REGISTRATION AND ACCURACY Separation Accuracy of Components on One Image: Limited by signal to noise to limit of about 1% of resolution. Errors of 1:5000 for wide fields (20’ field  0.2” problems). Images at Different Frequencies: Multi-frequency. Use same calibrator for all frequencies. Watch out at frequencies < 2 GHz when ionosphere can produce displacement. Minimize calibrator-target separation Images at Different Times (different configuration): Use same calibrator for all observations. Differences in position can occur up to 25% of resolution. Minimize calibrator-target separation. Radio versus non-Radio Images: Header-information of non-radio images often much less accurate than that for radio. For accuracy <1”, often have to align using coincident objects.

40 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 DEEP RADIO / OPTICAL COMPARISON Finally, image analysis list from the sensitive VLA 1.4 GHz (5  Jy rms) and Subaru R and Z-band image (27-mag rms). 1. Register images to 0.15” accuracy. 2. Compile radio catalog of 900 sources, with relevant parameters. 3. Determine optical magnitudes and sizes. 4. Make radio/optical overlays for all objects. 5. Spectral index between 1.4 and 8.4 GHz VLA images. 6. Correlations of radio and optical properties, especially morphologies and displacements. Some of software in existing packages. Some has to be done adhoc.

41 Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004 SSA13 RADIO/OPTICAL FIELD Radio and optical alignment accurate to 0.15”. But, original optical registration about 0.5” with distortions of 1”. Optical field so crowded, need Good registration for reliable ID’s.