NLTE 2/10 中村 尚樹. Multi Input files(mul23/input/) Input.~: option Input. atmos~:atmospheric model atmos dscale~:atmospheric scale atom~:atomic model abund~:atomic.

Slides:



Advertisements
Similar presentations
Associazione EURATOM ENEA sulla FUSIONE CONSEN A COMPUTER PROGRAM FOR TRANSIENT SIMULATION OF ENERGY AND MASS TRANSFER BETWEEN INTERCONNECTED VOLUMES DEVELOPED.
Advertisements

Absorption and Scattering Definitions – Sometimes it is not clear which process is taking place.
Stellar Atmospheres: Hydrostatic Equilibrium 1 Hydrostatic Equilibrium Particle conservation.
Chapter 16 Modeling the solar interior The vibrating sun Neutrinos Solar atmosphere: –Photosphere –Chromosphere –Corona Sunspots Solar magnetic fields.
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
Line Transfer and the Bowen Fluorescence Mechanism in Highly Ionized Optically Thick Media Masao Sako (Caltech) Chandra Fellow Symposium 2002.
Heiles meeting, Sep 04 Where is the Atomic Carbon in Ophiuchus Di Li Paul Goldsmith Gary Melnick and SWAS team.
Microphysics of the radiative transfer. Numerical integration of RT in a simplest case Local Thermodynamical Equilibrium (LTE, all microprocesses are.
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Initial Analysis of the Large-Scale Stein-Nordlund Simulations Dali Georgobiani Formerly at: Center for Turbulence Research Stanford University/ NASA Presenting.
Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.
Astrophysical Radiative Processes Shih-Ping Lai. Class Schedule.
Astro 300B: Jan. 24, 2011 Optical Depth Eddington Luminosity Thermal radiation and Thermal Equilibrium.
Physics 681: Solar Physics and Instrumentation – Lecture 10 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Physics 320: Astronomy and Astrophysics – Lecture IX
Excitation of Oscillations in the Sun and Stars Bob Stein - MSU Dali Georgobiani - MSU Regner Trampedach - MSU Martin Asplund - ANU Hans-Gunther Ludwig.
Super-granulation Scale Convection Simulations Robert Stein, David Benson - Mich. State Univ. Aake Nordlund - Niels Bohr Institute.
Physics 681: Solar Physics and Instrumentation – Lecture 4
METO 621 Lesson 5. Natural broadening The line width (full width at half maximum) of the Lorentz profile is the damping parameter, . For an isolated.
METO 621 Lesson 12. Prototype problems in Radiative Transfer Theory We will now study a number of standard radiative transfer problems. Each problem assumes.
1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b.
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
1 射电天文基础 姜碧沩北京师范大学天文系 2009/08/24-28 日,贵州大学. 2009/08/24-28 日射电天文暑期学校 2 Spectral Line Fundamentals The Einstein Coefficients Radiative Transfer with Einstein.
Lecture 2: Physical Processes In Astrophysical and Laboratory Plasmas Lecture 1: Temperature-Density regime Many physical processes Focus on Atomic+Plasma.
Particle diffusion, flows, and NLTE calculations J.M. Fontenla LASP-University. of Colorado 2009/3/30.
Stellar Atmospheres: Non-LTE Rate Equations 1 The non-LTE Rate Equations Statistical equations.
Stellar Atmospheres: Solution Strategies 1 Solution Strategies.
NLTE_307. Subroutine opac [Opac] calculate standard and background opacity [OPINIT]initialize opacity package [INJON]read data for [JON] [ABSKO]administer.
NLTE_3_29 3/29 NLTE. Subroutine opac [Opac] calculate standard and background opacity [OPINIT]initialize opacity package [INJON]read data about atoms.
Solar Physics Course Lecture Art Poland Modeling MHD equations And Spectroscopy.
Stellar Atmospheres II
Attenuation by absorption and scattering
Non-LTE in Stars The Sun Early-type stars Other spectral types.
INTRODUCTION Characteristics of Thermal Radiation Thermal Radiation Spectrum Two Points of View Two Distinctive Modes of Radiation Physical Mechanism of.
Stellar Atmospheres: Radiation Transfer 1 Radiation Transfer.
Model Construction The atmosphere connects the star to the outside world. All energy generated in the star has to pass through the atmosphere which itself.
Radiation In astronomy, the main source of information about celestial bodies and other objects is the visible light or more generally electromagnetic.
An introduction to the MULTI radiative transfer code Lars Heggland Institute of Theoretical Astrophysics, University of Oslo Kwasan Observatory, Kyoto.
Energy Transport Formal solution of the transfer equation Radiative equilibrium The gray atmosphere Limb darkening.
DMRT-ML Studies on Remote Sensing of Ice Sheet Subsurface Temperatures Mustafa Aksoy and Joel T. Johnson 02/25/2014.
COST 723 Training School - Cargese October 2005 KEY 1 Radiative Transfer Bruno Carli.
1 Max-Planck-Institut für Plasmaphysik Cadarache 2012 K. Behringer A few comments on Opacity Calculations Using ADAS214 Cadarache, Sept K. Behringer.
Line Broadening and Opacity. 2 Absorption Processes: Simplest Model Absorption Processes: Simplest Model –Photon absorbed from forward beam and reemitted.
A540 Review - Chapters 1, 5-10 Basic physics Boltzman equation
Colin Folsom (Armagh Observatory).  Read input  Calculate line components (Zeeman splitting)  Calculate continuum opacity (per window, per atmospheric.
Optimization of plasma uniformity in laser-irradiated underdense targets M. S. Tillack, K. L. Sequoia, B. O’Shay University of California, San Diego 9500.
Lecture 8 Optical depth.
Collisional-Radiative Model For Atomic Hydrogen Plasma L. D. Pietanza, G. Colonna, M. Capitelli Department of Chemistry, University of Bari, Italy IMIP-CNR,
Atomic Radiation Processes in AGN Julian Krolik Johns Hopkins University.
Spectral Line Strength and Chemical Abundance: Curve of Growth
1 ASTR 8000 STELLAR ATMOSPHERES AND SPECTROSCOPY Introduction & Syllabus Light and Matter Sample Atmosphere.
L. I. Mashonkina, T.A. Ryabchikova Institute of Astronomy RAS A. N. Ryabtsev Institute of Spectroscopy RAS NLTE ionization equilibrium of Nd II and Nd.
1 Equation of Transfer (Mihalas Chapter 2) Interaction of Radiation & Matter Transfer Equation Formal Solution Eddington-Barbier Relation: Limb Darkening.
NLTE vs LTE -Hα- Naoki Nakamura NLTE seminar 2/3.
Chapter 9 Stellar Atmospheres. Specific Intensity, I I ( or I ) is a vector (units: W m -2 Hz -1 sterad -1 )
Measurement of magnetic field by Hanle effect in Na I D 2 T. Anan (Kyoto univ.) 1, review of Holzreuter et al , Hanle effect of Na D2.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
Radiative Transfer in 3D Numerical Simulations Robert Stein Department of Physics and Astronomy Michigan State University Åke Nordlund Niels Bohr Institute.
Model Atmosphere Codes: ATLAS9 and ATLAS12
Numerical Simulations of Solar Magneto-Convection
Spectral Synthesis of Core-Collapse Supernovae – The JEKYLL code and its application. Mattias Ergon Collaborators: Claes Fransson (physics and software),
Chapter 13 – Behavior of Spectral Lines
Details of Equation-of-State and Opacity Models
Lecture 3 Radiative Transfer
Non-LTE Models for Hot Stars
Numerical Model Atmospheres (Hubeny & Mihalas 16, 17)
Basic of Light & Optics
P. Heinzel Astronomical Institute, Czech Academy of Sciences
Polarization via Rayleigh Scattering
Equation of Transfer (Hubeny & Mihalas Chapter 11)
Presentation transcript:

NLTE 2/10 中村 尚樹

Multi Input files(mul23/input/) Input.~: option Input. atmos~:atmospheric model atmos dscale~:atmospheric scale atom~:atomic model abund~:atomic abundance atom2~:atomic model2? rstat~:initial condition

Input~ DIFF=5.0,ELIM1=0.001,ELIM2=0.001,QNORM=12.85,THIN=0.1, IATOM2=0,ICONV=0,IHSE=0,ILAMBD=4,IOPAC=1,ISTART=4,ISUM=0, ITMAX=50,ITRAN=0,NMU=5, IWABND=0,IWATMS=0,IWATOM=0,IWCHAN=0,IWDAMP=00,IWEMAX=1,I WEQW=0, IWEVEC=0,IWHEAD=0,IWHSE=0,IWLGMX=1,IWLINE=0,IWLTE=0,IWN=0,IW NIIT=0, IWOPAC=0,IWRAD=0,IWRATE=0,IWSTRT=0,IWTAUQ=0,IWTEST=0,IWWMA T=0, IWJFIX=0,IWARN=2,IOPACL=0,INCRAD=0,INGACC=1,ICRSW=0, IOSMET=0,EOSMET=0.5, IDL1=1,IDLNY=1,IDLCNT=1,IDLOPC=1 Ex) input.h6 Input some parameterparameter Input option for calculationoption

Parameter in input~ Parameter value(h6) Diffusion parameter Threshold error value to change matrix in iteration Threshold error value to continue calculation Unit of Doppler coordinate (Km/s) Threshold optically thickness to use lambda iteration Output option Hydrostatic flag if atom is hydrogen Number of lambda iteration Opacities option for restart 0:intensity=0, 1:population=LTE,-1: read start value from “rstart” :: sub. INITIA The level which is determined by particle conservation. Maximum number for iteration Method for radiative transfer eq 0: feautrier, 1:Feautrier + cubic spline, 2: feautrier with Helmite Number for angle discrimination DIFF=5.0 ELIM1=0.001 ELIM2=0.001 QNORM=12.85 THIN=0.1 IATOM2=0 ICONV=0 IHSE=0 ILAMBD=4 IOPAC=1 ISTART=4 ISUM=0 ITMAX=50 ITRAN=0 NMU=5

Options IWABND=0 IWATMS=0 IWATOM=0 : IOPACL=0 : inclusion of background opacities from lines. ISCAT=1 :switches on a scattering version of Feautrier INCRAD=0: input of incident radiate field INGACC=1:??? ICRSW=0:switching collisional radiative switch IOSMET=0:background line opacity EOSMET=0.5: IDL1=1,IDLNY=1,IDLCNT=1,IDLOPC=1 [Iwxxxx] Printout option. IWxxxx=0 inhibits printout from the specific routine. IWxxxx¿0 normally gives a printout for every IWxxxx depth point. If IDL is available, most printouts should be switched off and the IDL routines usedinstead (see variables IDL1, IDLNY, IDLCNT and IDLOPC). (multi_manual.pdf pg.13)

Atmos~ VAL3C MASS SCALE * LG G 4.44 * NDEP 52 *LG COLUMN MASS TEMPERATURE NE V VTURB E E E E E E E E+00 : Ex) atmos.h6

Fixed parameter in.h MDEP1: NUMBER OF DEPTH POINTS. MK1: NUMBER OF LEVELS INCLUDING CONTINUUM LEVELS. MDEP: MAXIMUM NUMBER OF DEPTH POINTS. MK: MAXIMUM NUMBER OF LEVELS INCLUDING CONTINUUM LEVELS MLINE: MAXIMUM NUMBER OF BOUND-BOUND LINES MWIDE: MAXIMUM NUMBER OF BROAD LINES + CONTINUA IN DETAIL MRAD: MLINE+MWIDE MRFIX: MAXIMUM NUMBER OF FIXED TRANSITIONS MQ : MAXIMUM NUMBER OF FREQUENCY POINTS IN ONE TRANSITION MMU: MAXIMUM NUMBER OF ANGLE POINTS

Equations(ITER) variable Set in “Start “ Set in “Iteration”

How to set functions Line transition red : set in “ITER” blue : set in “START”

Necessary parameter for iteration

Flow chart(START) START RINPUT ⇐ input.h6 ([in] option) ATMOS ⇐ atoms.val3c & dscale.val3d ([in] scale,T, Ne, vz, vturb,(NH)) ATOM ⇐ atom.h6 ([in] atomic model) FRQ ⇐ atomic information ⇒ frequency OPAC ⇐ atom, atmosphere ⇒ opacity LTEPOP ⇐ atom, atmosphere ⇒ LTE population COLRAT ⇐ atom, atmosphere ⇒ collisional rate coefficient GAUSI ⇒ angle coordinate PROFILE ⇐ atom, atmosphere ⇒ line profile function INITIA ⇒ initial value of Number density and intensity ITER ITERATION Subroutine