Experience with 50um thick epi LGAD

Slides:



Advertisements
Similar presentations
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Advertisements

Hartmut Sadrozinski US-ATLAS 9/22/03 Detector Technologies for an All-Semiconductor Tracker at the sLHC Hartmut F.W. Sadrozinski SCIPP, UC Santa Cruz.
Slim Edges from Cleaving and ALD Sidewall Passivation Vitaliy Fadeyev, Hartmut F.-W. Sadrozinski, John Wright Santa Cruz Institute for Particle Physics,
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Studies and status of CMOS-based sensors research and development for ATLAS strip detector upgrade 1 Vitaliy Fadeyev, Zach Galloway, Herve Grabas, Alexander.
Alternative technologies for Low Resistance Strip Sensors (LowR) at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) M. Ullán, V. Benítez, J. Montserrat,
Ultra-Fast Silicon Detector 1 This report is a summary of what was shown at IEEE. Nicolo Cartiglia, INFN, Torino - UFSD - Timing Workshop CERN 2014 Nicolo.
TCT+, eTCT and I-DLTS measurement setups at the CERN SSD Lab
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
New Technological Capabilities at CNM25 th RD50 Workshop. CERN, November 19th-21th, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Hartmut F.-W. Sadrozinski,Beam Test of LGADs, 10th Trento, Feb Beam Test of LGADs Hartmut F.W. Sadrozinski with Astrid Aster, Vitaliy Fadeyev, Patrick.
Charge collection studies on heavily diodes from RD50 multiplication run (update) G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
1 Marco Ferrero With Nicolo’ Cartiglia, Francesca Cenna, Fabio Ravera, Universita’ degli Studi di Torino & INFN.
Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN.
Status of the Low-Resistance (LowR) Strip Sensors Project CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
Universita de Firenze Hartmut Sadrozinski, Scott Ely, Vitaliy Fadeyev, Zachary Galloway, Jeffrey Ngo, Colin Parker, Brett Petersen, Abe Seiden SCIPP, Univ.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
RD50 participation in HV-CMOS submissions G. Casse University of Liverpool V. Fadeyev Santa Cruz Institute for Particle Physics Santa Cruz, USA HV-CMOS.
M. Bruzzi, the issue of p-type disuniformity, 7° RD50 Workshop, CERN, November 14-16, 2005 The issue of doping disuniformity in p-type MCz Si sensors M.
Time Resolution of Thin LGADs Results from the Nov 2014 Beam Test at CERN Improvement in hand: Sensor Capacitance Measurements with  Front TCT 1 Hartmut.
June 1-5, Santa Fe N. M. Vertex Ultra-fast Silicon Detectors June 3, 2015 Abe Seiden UC Santa Cruz.
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
Ultra-Fast Silicon Detector 1 Aide memoire: we are exploring the possibility of using silicon detectors with moderate gain to achieve ~ 20 ps time resolution.
Status report on A 2D position sensitive microstrip sensor with charge division. A segmented Low Gain Avalanche Detector for tracking E. Currás, M. Fernández,
Hartmut F.W. Sadrozinski with Marta Baselga, Nicolo Cartiglia, Scott Ely, Vitaliy Fadeyev, Zachary Galloway, Jeffrey Ngo, Colin Parker, Davi Schumacher,
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Ultra-Fast Silicon Detectors (UFSD)
25th RD50 Workshop (Bucharest) June 13th, Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona IMB-CNM, Barcelona (Spain)
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
1 Nicolo Cartiglia, INFN, Torino - RD50 - Santander, 2015 Timing performance of LGAD-UFSD 1.New results from the last CNM LGAD runs 2.A proposal for LGAD.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Status of CNM RD50 LGAD Project27th RD50 Workshop, CERN 2-4 Dec Centro Nacional del MicroelectrónicaInstituto de Microelectrónica de Barcelona Status.
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
Time Resolution of UFSD 1 Hartmut F.-W. Sadrozinski, UFSD Timing RD50 Hartmut F.-W. Sadrozinski Z. Galloway, B. Gruey, H. Grabas, Z. Liang, S. N. Mak,
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
Ultra-Fast Silicon Detector 1 The “4D” challenge A parameterization of time resolution The “Low Gain Avalanche Detectors” project Laboratory measurements.
Ultra-Fast Silicon Detectors Hartmut F.-W. Sadrozinski
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
Surface measurements with gamma radiated ATLAS12A samples Matthew Domingo, Mike Shumko, Hartmut F.-W. Sadrozinski, Vitaliy Fadeyev, Zachary Galloway, Zhijun.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
Timing capabilities of Ultra-Fast Silicon Detector 1 A parameterization of time resolution A program to calculate Time resolution UFSD Timing capabilities.
TCT measurements with strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž 1,2, Marko.
Investigation of the effects of thickness, pitch and manufacturer on charge multiplication properties of highly irradiated n-in-p FZ silicon strips A.
TCT measurements of HV-CMOS test structures irradiated with neutrons I. Mandić 1, G. Kramberger 1, V. Cindro 1, A. Gorišek 1, B. Hiti 1, M. Mikuž 1,2,
Ultra-Fast Silicon Detector 1 This report is a summary of what was shown at IEEE. Nicolo Cartiglia, INFN, Torino - UFSD - RD50 CERN 2014 Nicolo Cartiglia.
Development of Silicon Microstrip Sensors in 150 mm p-type Wafers
Radiation damage studies in LGAD detectors from recent CNM and FBK run
Fully Depleted Low Power CMOS Detectors
4D Sensors: Unifying the Space and Time Domain with Ultra-Fast Silicon Detectors Hartmut Sadrozinski, Scott Ely, Vitaliy Fadeyev, Zachary Galloway, Jeffrey.
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
RD50 Workshop June 2016, Torino, Italy
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
Hartmut F.-W. Sadrozinski, UFSD, 28th RD50 Meeting
Replacing Boron with Gallium
Ultra-fast Silicon Detectors Hartmut F.-W. Sadrozinski
Thin Planar Sensors for Future High-Luminosity-LHC Upgrades
Signal Formation & Timing in Conventional P-I-N Diodes
HVCMOS Detectors – Overview
Enhanced Lateral Drift (ELAD) sensors
Presentation transcript:

Experience with 50um thick epi LGAD Hartmut F.W. Sadrozinski with Caitlin Celic, Scott Ely, Vitaliy Fadeyev, Patrick Freeman, Zachary Galloway, Zhijun Liang, Colin Parker, Abe Seiden, Andriy Zatserklyaniy SCIPP, Univ. of California Santa Cruz, USA Marta Baselga, Pablo Fernández-Martínez, David Flores , Virginia Greco, Salvador Hidalgo, Giulio Pellegrini, David Quirion, IMB-CNM, Barcelona, Spain Nicolo Cartiglia, Francesca Cenna INFN Torino, Torino, Italy Why LGAD, why thin? CCE (IR Laser, a top ) Gain thin-thick Doping Profile Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Low-Gain Avalanche Detector (LGAD) High-Field: Gain Marta Baselga, Trento Workshop Feb. 2013 Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Fabrication of LGADs at CNM Barcelona Edge of n+ and periphery variations Wafers with different p-layer doping profiles Shallow and deep n-diffusion profiles High resistivity FZ 300 μm p-type substrate Epi 100 Ω-cm p-type wafers,10-75 µm thick Segmented detectors (strips, pixels) Wafers contain reference PiN diodes Backside metal grid allows red laser TCT Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Time Resolution for thin LGAD For the 300 µm thick large LGAD pads (C ≈ 10 pF), the time resolution measured in the beam test (BT) at Frascati, is predicted by the Weightfield (WF2) simulation –(see N. Cartiglia talk) The time resolution is predicted to improve for smaller LGAD (1mmx1mm) and optimized electronics. Reduced the thickness also improves the time resolution. Expect for 50 µm thick LGAD (C~2pF): σt = 30 ps (requires ASIC) N. Cartiglia, F. Cenna et al. “Weightfield”, 2014 IEEE NSS-MIC Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

High BW Charge Collection Set-up Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Charge Collection with a’s from Am(241) Front side illumination Back side illumination a’s a’s Colin Parker Initial e- e- & h+ from multiplication Rise time: 400ps For MIP about 600ps Does not work with epi Fall time due to C = 34 pF Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Gain in thin LGAD ( Top-side  Injection) The epi structure prevents electron injection through back-side  radiation. Using front-side  injection to compare LGAD and no-gain pads requires that the energy loss of the ’s in the active region are the same (or are known well). The  signal in the no-gain diode is constant as a function of the bias voltage. While the  signal in the LGAD reaches the same level only after sufficient depth of the p+ implant is depleted (we estimate ~ 7 um) at a bias of ~ 25V. . At higher bias, gain of about g = 1.4 is observed. Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Gain in thin LGADs: IR Laser Injection Gain in 50 µm 100 Ω-cm epi LGAD pad (6827) IR (1064nm) laser injection from front shows characteristic LGAD voltage dependence of signal, while no-gain diode is constant above full-depletion voltage VFD = 140 V. Gain of about 3 is observed. N.B. The 50 µm 100 Ω-cm epi LGAD strip and pixel sensors broke down before reaching their depletion voltage. The difference of the measured gain factor for top-side  Injection wrt laser (g=3) is predicted by the “Weightfield” program Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Segmented LGADs (300um FZ) Pixels: First measurement of LGAD pixels (FE-I3 and FE-I4). Collected charge with 90Sr for LGAD and no-gain reference same up to 300V within calibration uncertainty. No multiplication 300 µm FZ low p-dose run 6827 Strips Scan with focussed IR laser across strips with different p+ and n+ widths. Same charge measured (within laser intensity variations) for LGAD strips and no-gain reference up to 600 V. No multiplication observed in center of p+ layer, or at implant edges. E. Cavallaro, et al., RESMDD14, Florence (Italy), Oct. 2014 Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Last night in the H6 Beam Line…. 2 300FZ LGAD (run 6474) with Broad Band (BB) amp & Charge Sensitive. Amp CSA 50um epi LGAD (run 6827) with BB 300 FZ BB SiPM Trigger 50um epi 300 FZ CSA Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Doping Density Profile (C-V) Device Voltage Lag [V] Nmax [cm-3] NBulk [cm-3] Gain (400V) 6474 W8 C8 FZ 35 1.2e16 1 e12 8 6474 W7 I4 FZ 29 1.0e16 1.e12 2.5 6827 W13 300um FZ 14 0.8e16 1 6827 W8 50um epi (gain) 1.1e14 1.4-2 6827 W8 50um epi (no-gain) < 1 7e13 Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014 E-Field in thin LGAD Run 6827 has 50um epi LGAD with gain, but 300um FZ LGAD with no gain with the same doping profile of the p-layer. The evaluation of the electric field shows that the thin sensors have a much larger E-field and thus charge multiplication than thick detectors. Thin sensors have a larger bias voltage dependence of the field, permitting the multiplication to be set largely by the bias voltage instead of mainly by the doping profile as in thick sensors. Thin LGAD have more “compact” fields! E-Field thin-thick Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Doping Concentration from C-V Depletion depth shows the voltage “lag” for the LGAD diode. Voltage dependence of depletion depth x permits conversion of capacitance C(V) -> C(x) doping density N(V) -> N(x) 1/C2 shows a voltage “lag” for the depletion of the p+ layer responsible for multiplication. Doping density profile shows the p+ layer at shallow depth, and the ~10kΩ-cm FZ bulk. Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Doping Profile Measurements Available methods Spreading Resistance Profiling LAL Pixel Group Trento workshop 2014 (Vangelis talk) Conductive Atomic Force Microscopy SiMS Secondary Ion Mass Spectroscopy Terahertz Imaging “Terahertz imaging of silicon wafers” M. Herrmann at al, JAP 91,3, 1 (2002) C-V (used here) Micro-section + Etch Salvador Hidalgo, 22nd RD50 see Marta’s talk XPS (ESCA) X-ray photoelectron spectroscopy Question: Method applicable for our range : N = 1012 -1017 cm-3 ? Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Measuring the Doping Profile in Low-Gain Avalanche Detectors LGAD Methods envisioned: Capacitance – Voltage (C-V): UC Santa Cruz, Hartmut Sadrozinski Mechanical micro-section + stain: CNM Barcelona, Salvator Hidalgo Secondary Ion Mass Spectroscopy (SIM):: LAL Orsay, Abdenour Lounis X-Ray Photoelectric Spectroscopy (XPS, ESCA): LAL Orsay, Abdenour Lounis Spreading Resistance Profiling (SRP): LAL Orsay, Abdenour Lounis Conductive Atomic Force Microscopy(CAFM): LAL Orsay, Abdenour Lounis Terahertz Imaging: Fraunhofer IPM, Georg v. Freymann Preparation of RD50 Common Project; LAL (Orsay), CNM (Barcelona), SCIPP (Santa Cruz), + ?? Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Test Structures in CNM RD50 Run L1 P-Stop, C-Stop Well L2 P-Well (P Multiplication) L3 JTE L4 N-Well L4 + L2 N-Well over P-Well L4 + L3 N-Well over JTE 2.75 mm 3.65 mm The bevel angle  determines the depth d of probing:  =1 deg d= 3mm*0.017 = 50 µm  =4 deg d= 200 µm Field Plate N-Well Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014

Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014 Conclusions Thin LGAD promise to have good time resolution The low-resistance bulk of the thin epi LGAD in run 6827 works on pads, while segmented sensors brake down to early. The 300um FZ bulk in run 6827 allows high voltage on segmented LGAD, but no gain. Thin LGAD allow higher gain due to higher “compactness” of the electrical field. In addition, the E-field has a stronger bias dependence. Have started beam tests to evaluate time resolution (N. Cartiglia’s talk ?) Simulation of gain depends on the knowledge of doping concentration: plan submission of a RD50 common project (LAL, CNM, UCSC: invitation to others to participate! Hartmut F.-W. Sadrozinski, thin LGAD, 25th RD50, Nov 2014