1 Chapter 15 Probabilistic Reasoning over Time
2 Outline Time and UncertaintyTime and Uncertainty Inference: Filtering, Prediction, SmoothingInference: Filtering, Prediction, Smoothing Hidden Markov modelsHidden Markov models Brief Introduction to Kalman FiltersBrief Introduction to Kalman Filters Dynamic Bayesian networksDynamic Bayesian networks Particle FilteringParticle Filtering
3 Time and uncertainty The world changes; we need to track and predict it Diabetes management vs vehicle diagnosis Basic idea: copy state and evidence variables for each time step
4 Markov processes (Markov chains)
5 Example
6 Inference tasks t
7 Filtering
8 Filtering example RtP(Ut) t0.9 f0.2 R t-1 P(R t ) t0.7 f0.3
9 Filtering example R t-1 P(R t ) t0.7 f0.3 RtP(Ut) t0.9 f0.2
10 Smoothing
11 Smoothing example R t-1 P(R t ) t0.7 f0.3 RtP(Ut) t0.9 f0.2
12 Most likely explanation
13 Viterbi example
14 Hidden Markov models
15 Country dance algorithm
16 Country dance algorithm
17 Country dance algorithm
18 Country dance algorithm
19 Kalman Filters
20 Updating Gaussian distributions
21 Simple 1-D example
22 General Kalman update
23 2-D tracking example: Filtering
24 2-D tracking example: smoothing
25 Where it breaks
26
27 Dynamic Bayesian networks
28 DBNs vs. HMMs
29 DBNs vs Kalman Filters
30 Exact inference in DBNs
31 Likelihood weighting for DBNs
32 Particle Filtering
33 Particle Filtering contd.
34 Particle ltering performance
35 Chapter 15, Sections 1-5 Summary