Do Now 3/12/10 Take out HW from last night. Copy HW in your planner. Text p. 599, #73-81 all Copy HW in your planner. Text p. 603, #4-40 multiples of 4 In your notebook, define a perfect square in your own words. Then list the squares of the numbers 1 to 20.
Homework Text p. 599, #73 – 81 all 73) a² - 18a + 81 74) k² + 24k + 144 75) 9x² - 12x + 4 76) m² - 16 77) 4c² - 1 78) 25n² - 9 79) 9y² - 48y + 64 80) 4s² - 20st + 25t² 81) x² - 4y²
Chapter 9 “Polynomials and Factoring” (9.1) Add and subtract polynomials (9.2) Multiply polynomials (9.3) Find special products of polynomials (9.4) Solve polynomial equations in factored form (9.5) Factor x² + bx + c (9.6) Factor ax² + bx + c (9.7) Factor special products (9.8) Factor polynomials completely
Objective SWBAT factor special product patterns
Section 9.7 “Factor Special Products” (1) perfect square trinomials (2) the difference of two squares Squares are numbers or variables that have a whole number or whole variable square root. x² 9 t² 1 25 4z²
Section 9.7 “Factor Special Products” You can use the following special products patterns to help you factor certain polynomials. Perfect Square Trinomial Pattern (addition) a² + 2ab + b² (a + b)² (a + b)(a + b) Perfect Square Trinomial Pattern (subtraction) a² – 2ab + b² (a – b)² (a - b)(a - b) Difference of Two Squares Pattern a² – b² (a + b)(a – b)
a² + 2ab + b² (a + b)² (x + 5)² x² + 10x + 25 (3x + 2)² 9x² + 12x + 4 Perfect Square Trinomial Pattern (addition) a² + 2ab + b² (a + b)² (a + b)(a + b) Always check for perfect squares FIRST!! (x + 5)² x² + 10x + 25 (3x + 2)² 9x² + 12x + 4 2(3x + 2)² 2(9x² + 12x + 4) 18x² + 24x + 8 Factor out 2 first, then look for perfect squares.
a² – 2ab + b² (a – b)² (x – 3)² x² – 6x + 9 (6y – 1)² 36y² – 12y + 1 Perfect Square Trinomial Pattern (subtraction) a² – 2ab + b² (a – b)² (a - b)(a - b) Always check for perfect squares FIRST!! (x – 3)² x² – 6x + 9 (6y – 1)² 36y² – 12y + 1 3(x² – 2xy + y²) 3x² – 6xy + 3y² 3(x – y)² Factor out 3 first, then look for perfect squares.
a² – b² (a + b)(a – b) x² – 16 (x + 4)(x – 4) 9(2y + 3)(2y – 3) Difference of Two Squares Pattern a² – b² (a + b)(a – b) Always check for perfect squares FIRST!! x² – 16 (x + 4)(x – 4) 9(2y + 3)(2y – 3) 36y² – 81 (7c + d)(7c – d) 49c² – d²
Skills Review Handbook NJASK7 Prep Homework Text p. 603, #4-40 multiples of 4