Economics 173 Business Statistics Lecture 10 Fall, 2001 Professor J. Petry

Slides:



Advertisements
Similar presentations
Lecture 17: Tues., March 16 Inference for simple linear regression (Ch ) R2 statistic (Ch ) Association is not causation (Ch ) Next.
Advertisements

Lesson 10: Linear Regression and Correlation
Kin 304 Regression Linear Regression Least Sum of Squares
Chapter 12 Simple Linear Regression
Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
1 Simple Linear Regression and Correlation The Model Estimating the Coefficients EXAMPLE 1: USED CAR SALES Assessing the model –T-tests –R-square.
Simple Linear Regression
Chapter 12 Simple Regression
Simple Linear Regression
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 12a Simple Linear Regression
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 13 Introduction to Linear Regression and Correlation Analysis.
Chapter Topics Types of Regression Models
Linear Regression and Correlation Analysis
1 Simple Linear Regression Chapter Introduction In this chapter we examine the relationship among interval variables via a mathematical equation.
Chapter 13 Introduction to Linear Regression and Correlation Analysis
1 Simple Linear Regression and Correlation Chapter 17.
REGRESSION Predict future scores on Y based on measured scores on X Predictions are based on a correlation from a sample where both X and Y were measured.
Lecture 17 Interaction Plots Simple Linear Regression (Chapter ) Homework 4 due Friday. JMP instructions for question are actually for.
Chapter 14 Introduction to Linear Regression and Correlation Analysis
1 Simple Linear Regression Chapter Introduction In Chapters 17 to 19 we examine the relationship between interval variables via a mathematical.
Lecture 19 Simple linear regression (Review, 18.5, 18.8)
Correlation and Regression Analysis
Simple Linear Regression. Introduction In Chapters 17 to 19, we examine the relationship between interval variables via a mathematical equation. The motivation.
Chapter 6 (cont.) Regression Estimation. Simple Linear Regression: review of least squares procedure 2.
1 Simple Linear Regression 1. review of least squares procedure 2. inference for least squares lines.
Correlation and Linear Regression
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 13 Linear Regression and Correlation.
Regression and Correlation Methods Judy Zhong Ph.D.
Introduction to Linear Regression and Correlation Analysis
Chapter 11 Simple Regression
Linear Regression and Correlation
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
1 Least squares procedure Inference for least squares lines Simple Linear Regression.
Chapter 6 & 7 Linear Regression & Correlation
Economics 173 Business Statistics Lecture 11 Fall, 2001 Professor J. Petry
OPIM 303-Lecture #8 Jose M. Cruz Assistant Professor.
Keller: Stats for Mgmt & Econ, 7th Ed
Introduction to Linear Regression
Chap 12-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 12 Introduction to Linear.
Applied Quantitative Analysis and Practices LECTURE#23 By Dr. Osman Sadiq Paracha.
Statistical Methods Statistical Methods Descriptive Inferential
Chapter 4 Linear Regression 1. Introduction Managerial decisions are often based on the relationship between two or more variables. For example, after.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 13-1 Introduction to Regression Analysis Regression analysis is used.
Chapter 11 Correlation and Simple Linear Regression Statistics for Business (Econ) 1.
Chapter 6 (cont.) Difference Estimation. Recall the Regression Estimation Procedure 2.
Economics 173 Business Statistics Lectures Summer, 2001 Professor J. Petry.
CHAPTER 5 CORRELATION & LINEAR REGRESSION. GOAL : Understand and interpret the terms dependent variable and independent variable. Draw a scatter diagram.
Chapter 8: Simple Linear Regression Yang Zhenlin.
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 18 Introduction to Simple Linear Regression (Data)Data.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
1 Simple Linear Regression and Correlation Least Squares Method The Model Estimating the Coefficients EXAMPLE 1: USED CAR SALES.
Linear Regression Linear Regression. Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc. Purpose Understand Linear Regression. Use R functions.
Lecture 10 Introduction to Linear Regression and Correlation Analysis.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 17 Simple Linear Regression and Correlation.
1 Simple Linear Regression Review 1. review of scatterplots and correlation 2. review of least squares procedure 3. inference for least squares lines.
Chapter 14 Introduction to Regression Analysis. Objectives Regression Analysis Uses of Regression Analysis Method of Least Squares Difference between.
BUSINESS MATHEMATICS & STATISTICS. Module 6 Correlation ( Lecture 28-29) Line Fitting ( Lectures 30-31) Time Series and Exponential Smoothing ( Lectures.
11-1 Copyright © 2014, 2011, and 2008 Pearson Education, Inc.
Introduction. We want to see if there is any relationship between the results on exams and the amount of hours used for studies. Person ABCDEFGHIJ Hours/
Chapter 12 Simple Regression Statistika.  Analisis regresi adalah analisis hubungan linear antar 2 variabel random yang mempunyai hub linear,  Variabel.
1 Simple Linear Regression Chapter Introduction In Chapters 17 to 19 we examine the relationship between interval variables via a mathematical.
Warm-Up The least squares slope b1 is an estimate of the true slope of the line that relates global average temperature to CO2. Since b1 = is very.
The simple linear regression model and parameter estimation
Inference for Least Squares Lines
Linear Regression.
Chapter 11: Simple Linear Regression
Simple Linear Regression Review 1
Presentation transcript:

Economics 173 Business Statistics Lecture 10 Fall, 2001 Professor J. Petry

Simple Linear Regression and Correlation Chapter 17

17.1 Introduction In this chapter we employ Regression Analysis to examine the relationship among quantitative variables. The technique is used to predict the value of one variable (the dependent variable - y)based on the value of other variables (independent variables x 1, x 2,…x k.)

17.2 The Model The first order linear model y = dependent variable x = independent variable  0 = y-intercept  1 = slope of the line = error variable x y 00 Run Rise   = Rise/Run  0 and  1 are unknown, therefore, are estimated from the data.

17.3 Estimating the Coefficients The estimates are determined by –drawing a sample from the population of interest, –calculating sample statistics. –producing a straight line that cuts into the data.           The question is: Which straight line fits best? x y

3 3 The best line is the one that minimizes the sum of squared vertical differences between the points and the line.     (1,2) 2 2 (2,4) (3,1.5) Sum of squared differences =(2 - 1) 2 +(4 - 2) 2 +( ) 2 + (4,3.2) ( ) 2 = 6.89 Sum of squared differences =(2 -2.5) 2 +( ) 2 +( ) 2 +( ) 2 = Let us compare two lines The second line is horizontal The smaller the sum of squared differences the better the fit of the line to the data.

To calculate the estimates of the coefficients that minimize the differences between the data points and the line, use the formulas: The regression equation that estimates the equation of the first order linear model is:

Example 17.1 Relationship between odometer reading and a used car’s selling price. –A car dealer wants to find the relationship between the odometer reading and the selling price of used cars. –A random sample of 100 cars is selected, and the data recorded. –Find the regression line. Independent variable x Dependent variable y

Solution using first formula –Solving by hand To calculate b 0 and b 1 we need to calculate several statistics first; where n = 100.

Solution –Solving by hand using the second formula First we obtain the necessary numbers to enter: n = 100.

–Using the computer (see file Xm17-01.xls) Tools > Data analysis > Regression > [Shade the y range and the x range] > OK

This is the slope of the line. For each additional mile on the odometer, the price decreases by an average of $ The intercept is b 0 = No data Do not interpret the intercept as the “Price of cars that have not been driven”

Example – Armani’s Pizza –Armani’s Pizza is considering locating at the U of I campus. To do their financial analysis, they first need to estimate sales for their product. –They have data from their existing 10 locations on other college campuses. –Estimate sales for the University of Illinois, with a college population of 35,000.

Example – Armani’s Pizza –Begin by plotting the data –Followed by calculating the statistics of your regression

Example – Armani’s Pizza –Solve for b 1, then b 0 using the second formula –After obtaining values for your regression line, plug in the value for your independent variable (35, not 35,000) into the formula, and predict sales!

Example – Armani’s Pizza Excel Output

17.4 Error Variable: Required Conditions The error  is a critical part of the regression model. Four requirements involving the distribution of  must be satisfied. –The probability distribution of  is normal. –The mean of  is zero: E(  ) = 0. –The standard deviation of  is   for all values of x. –The set of errors associated with different values of y are all independent.

From the first three assumptions we have: y is normally distributed with mean E(y) =  0 +  1 x, and a constant standard deviation   From the first three assumptions we have: y is normally distributed with mean E(y) =  0 +  1 x, and a constant standard deviation     0 +  1 x 1  0 +  1 x 2  0 +  1 x 3 E(y|x 2 ) E(y|x 3 ) x1x1 x2x2 x3x3  E(y|x 1 )  The standard deviation remains constant, but the mean value changes with x