Spectral Line Access Paris Observatory and ESA/ESAC ML Dubernet, P. Osuna, M. Guanazzi, J. Salgado, E. Roueff MLD acknowledges support from VO-France,

Slides:



Advertisements
Similar presentations
Registries Work Package 2 Requirements, Science Cases, Use Cases, Test Cases Charter: Focus on science case scenarios, and use cases related specifically.
Advertisements

European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Jesús Salgado SLAP Implementations Sep 2006, Moscow, Russia Simple Line.
DM WORKING GROUP MADRID OCT WG STATUS Spectral DM: document updated and reformatted Spectral DM Java library prototype nearly ready Characterization:
SLAP: Simple Line Access Protocol v0.5
IVOA, Kyoto May Data Access Layer Working Group Working Group Report and Summary Doug Tody National Radio Astronomy Observatory International.
CASDA Virtual Observatory CSIRO ASTRONOMY AND SPACE SCIENCE Arkadi Kosmynin 11 March 2014.
Christian Endres, Universität zu Köln 69 th ISMS, Urbana-Champaign, 2014 IMPROVED INFRASTUCTURE FOR CDMS AND JPL MOLECULAR SPECTROSCOPY CATALOGUES Christian.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Molecular Bonds Molecular Spectra Molecules and Solids CHAPTER 10 Molecules and Solids Johannes Diderik van der Waals (1837 – 1923) “You little molecule!”
Molecular Fluorescence Spectroscopy
THE PROGRAM COMPLEX FOR COMPUTATION OF SPECTROSCOPIC CHARACTERISTICS OF ATOMIC AND MOLECULAR GASES IN UV, VISIBLE AND IR SPECTRAL RANGE FOR A WIDE RANGE.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
The Electronic Spectra of Coordination Compounds.
Lecture 4 photochemistry What is Photochemistry? Photochemistry: a chemical interaction involving radiation Why mention photochemistry? Photochemistry.
Spectroscopy Chapter 7.
Information System to Access HITRAN via the Internet Yu. L. Babikov, S. N. Mikhailenko, S. A. Tashkun, V.E. Zuev Institute of Atmospheric Optics, Tomsk,
Representing scientific databases online andrew markwick jodrell bank centre for astrophysics university of manchester, UK
VI-4 JPL Catalog Upgrades: New Tools, New Formats and New Interfaces BRIAN J. DROUIN, SHANSHAN YU, JOHN C. PEARSON, Jet Propulsion Laboratory, California.
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
Spectral Line Physics Atomic Structure and Energy Levels Atomic Transition Rates Molecular Structure and Transitions 1.
Collaborating with VAMDC Guy Rixon RADAM database workshop, Caen, October 2013.
SCI Scientific Inquiry The Big Picture: Science, Technology, Engineering, etc.
1 October 7, 2011 ADAS WORKSHOP Mi-Young Song Mi-Young Song Atomic and Molecular research activities of Data Center for Plasma Properties (NFRI)
Atomic Spectra. Much of what we know about atomic structure comes from analysis of light either being emitted or absorbed by substances. Elements can.
Chapter 10.2 Radiation Tells Us the Temperature, Size, and Composition of Stars.
VAMDC Virtual Atomic and Molecular Data Centre (.org) Coordinator: M.L. Dubernet, Paris GREAT-ESF Workshop, August.
Atomic & Molecular Lines Data Model Paris Observatory and ESA/ESAC ML Dubernet, P. Osuna, M. Guanazzi, J. Salgado, E. Roueff MLD acknowledges support.
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Jesús Salgado SLAP Implementations May 2007, Beijing, China Simple Line.
Spectroscopy in VO, ESAC Mar Access to Spectroscopic Data In the VO Doug Tody (NRAO/US-NVO ) for the IVOA DAL working group I NTERNATIONAL.
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Isa Barbarisi VOSpec, new functionalities Madrid, 6-7Oct 2005 New functionalities.
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Jesús Salgado Spectroscopic lines in the VO context Mar 2007, ESAC, Madrid,
Vienna Atomic Line Database T. A. Ryabchikova Institute of Astronomy RAS.
The Electronic Spectra of Coordination Compounds.
Electron Configuration And a Brief Introduction to the Quantum Model of the Atom.
Chemical Reaction Engineering Lecture (1) Week 2.
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Jesús Salgado IVOA Interop meeting Strasbourg, May 2009 (1/12) SLAP v0.9.
The next generation of powerful millimeter/submillimeter observatories (ALMA, Herschel) require extensive resources to help identify spectral line transitions.
ATOMIC/MOLECULAR SPECTROSCOPY  Various spectroscopic techniques are used to elucidate molecular structures (eg. NMR), to study molecular vibrations (IR.
Archival Workshop on Ingest, Identification, and Certification Standards Certification (Best Practices) Checklist Does the archive have a written plan.
The Bohr Model of the Atom. The behavior of electrons in atoms is revealed by the light given off when the electrons are “excited” (made to absorb energy).
PhotDM implementation feedback | Jesus Salgado | ESAC | 18 October 2011 | IVOA Pune 2011 | Pag. 1 Photometry DM implementation feedback Jesus.
Workshop on How to Publish Data in VO ESAC, June 25-June DAL (Data Access Layer) protocols Jesus Salgado
UCL DEPT. OF SPACE & CLIMATE PHYSICS SOLAR & STELLAR PHYSICS GROUP Atomic Data for Astrophysics VOTADA VO Tools and Atomic Data for Astrophysics Giulio.
Javier Junquera Introduction to atomistic simulation methods in condensed matter Alberto García Pablo Ordejón.
12 Oct 2003VO Tutorial, ADASS Strasbourg, Data Access Layer (DAL) Tutorial Doug Tody, National Radio Astronomy Observatory T HE US N ATIONAL V IRTUAL.
Chemistry XXI Unit 2 How do we determine structure? The central goal of this unit is to help you develop ways of thinking that can be used to predict the.
Mireille Louys et al., OV-France Theory WG meeting, LYON, June DALIA : an observation vs simulation comparison frame work What could be a Model.
European Space Astronomy Centre (ESAC) Villafranca del Castillo, Spain Matteo Guainazzi IVOA InterOp meeting, 7 October 2005 Line Data Model Matteo Guainazzi*
● Link between : – the DALIA tool (Direct Approach to Spectral Line Analysis ) ● Generic Interface for Modelisation Codes – the Basecol database ● Use.
Role of Theory Model and understand catalytic processes at the electronic/atomistic level. This involves proposing atomic structures, suggesting reaction.
ESAVO/European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Pedro Osuna ASVOWS Mar 2007 ESAC Astronomical Spectroscopy.
RF11 THE JPL MILLIMETER AND SUBMILLIMETER SPECTRAL LINE CATALOG BRIAN J. DROUIN, SHANSHAN YU, JOHN C. PEARSON, Jet Propulsion Laboratory, California Institute.
Publishing Combined Image & Spectral Data Packages Introduction to MEx M. Sierra, J.-C. Malapert, B. Rino VO ESO - Garching Virtual Observatory Info-Workshop.
Describing 3D Datasets Igor Chilingarian (CRAL Observatoire de Lyon/Sternberg Astronomical Institute of the Moscow State University) IVOA DM & DAL WG –
UCL DEPT. OF SPACE & CLIMATE PHYSICS SOLAR & STELLAR PHYSICS GROUP Atomic Data for Astrophysics VOTada VO Tools and Atomic Data for Astrophysics Giulio.
JENAM 2008 Theory Standards for the Virtual Observatory SimDB + SimDAP.
A dynamic database of molecular model spectra
08/11/2005 M.L. Dubernet, Obernai - VO School - Introduction et BDD de Physique MIS: science with VO Contributions from F. Boone, C. Bot, J.M. Désert,
The Rovibronic Spectra of The Cyclopentadienyl Radical (C5H5)
Data Models: Plenary-1 Jonathan McDowell May 2006
Spectroscopy Chapter 7.
CHAPTER 9 Molecules Rotations Spectra Complex planar molecules
Development of a Solid Spectroscopy Data Model (SSDM)
ReMoDy Reactive Molecular Dynamics for Surface Chemistry Simulations
CHAPTER 9 Molecules Rotations Spectra Complex planar molecules
5.4 Learning from Light Our goals for learning
VOTADA VO Tools and Atomic Data for Astrophysics
5.4 Learning from Light Our goals for learning
SVO - ESAVO Use case: Comparison of evolutionary synthesis models
Presentation transcript:

Spectral Line Access Paris Observatory and ESA/ESAC ML Dubernet, P. Osuna, M. Guanazzi, J. Salgado, E. Roueff MLD acknowledges support from VO-France, MDA project (F. Genova), Paris Observatory

Project Overview (1) Access Atomic/Molecular DB starting with line lists  Theoretical (measured or calculated) DB  Observed line lists DB Necessary to access complementary information in order to interpret spectra or model astrophysical media: excitation rate coefficients, etc.. Clients: stronger evolution towards public software packages for spectral analysis and on line codes for astro. Simulation  Shared, structured, complete and documented access to AM DB  Standardisation O/I, queries, ressources ID

Overview (2) Numerous DB are available  Atomic lines: NIST DBs, Kurucz's CD-ROM, Atomic Line List of P. Van Hoof, TOPbase, Kelly Atomic Line DB, VALD, MCHF/MCDHF Collection, D.R.E.A.M, KAERI AMODS  Molecular Lines: JPL Spectroscopic DB, CDMS, HITRAN, GEISA, NIST  Other DB: IEAE, NIFS, CHIANTI, UMIST, BASECOL, small compilations  Observed databases: ATOMDB, NIST,... Identification of Pbs  Different DB have similar datasets DB have different levels of update Lengthy to identify origin of datasets, find all relevant description of data  Useful data for a single astrophysical application are dispersed in various DB No homogeneous description of data

Access to Lines: Data Model Based on fundamental physics, current databases and needs in astrophysics Current DM is centered around line for atom and molecules: electronic, vibrational, rotational transitions (couplings) Allows for identification of  Chemical Species  Level -->Quantum State-->Quantum numbers  Origin and modification of Line Can be used to model other processes involving transitions because a line corresponds to a transition between two levels Could be extended to nuclear physics

H(3p 2 P 0 3/2 ) ---> H(1s 2 S 1/2 ) + hv

Quantum Number: coupling N 2 H + : rotationN, 3 nuclearSpinI level characterized with a single state |NF 1 F 2 F> N+I 1 = F 1 ; F 1 +I 2 =F 2 ; F 2 +I 3 = F QuantumNumber : I 1 name = nuclearSpinI type = nuclear spin of outer nitrogen origin = pure intValue = 1 QuantumNumber : F 2 name = intermediateAngularMomentumF type = intermediate angular momentum origin = N + nuclearspinI (nuclear spin of outer nitrogen) + nuclearspinI (nuclear spin of inner nitrogen) value = 0

DM : general transition model Each time a species undergoes a transition, it can be modeled by a Line DM A transition is modeled by Before.... Oups Something happens!... After Light – Matter Interaction : bound-bound A(j) + hv ---> A(j') A(j') ---> A(j) + hv

DM : general transition model Light-Matter : bound-continuum Radiative recombinaison (Z, N-1)[level.of.Z(N-1)] + e ---> (Z, N)[level.of.Z(N)] + hv InitialElement = ChemicalElement IonizationStage = -1 (comparatively to N) Z is specified full atomic symbol is specified (see DM) FinalElement = ChemicalElement IonizationStage = 0 (comparatively to N) Z is specified full atomic symbol is specified (see DM)

DM : general transition model Matter – Matter Interaction Excitation : A(i) + B(k) --> A(j) + B(l) TargetLine = Line : A –initialElement=finalElement –InitialLevel = i ; finalLevel = j PerturberLine = Line : B Other attributes specific to excitation –Temperature –Rate coefficients Reaction : AB(i) + C(k) --> A(j) +BC(l) –Reactant = (1 to *) Line: AB, C InitialChemical: AB or C –InitialLevel_species : i –FinalLevel_species : none FinalChemical: none –Products = (1 to *) Line: A, BC –Reverse identification

DM document: Current status Draft currently being written up All attributes are carefully described following exact theoretical definitions Most quantum numbers are described  In particular, most of the well known coupling cases

DM : missing Provenance  Observations : see characterization  Measured Data : instrument and parameters  Calculated sets : VOTheory Various steps in getting final data, ex :  Method Hamiltonian (parameters, approximations), basis sets  Algorithms Fitting functions: parameters, function, error Etc...

Access : Query Parameters Opened question for Line Access : SLAP : Simple Line Access Protocol  By wavelength_min, _max, _mid  By species: Fe I, H 2 0,...  By type of transition (E1, M1, E2)  By type of levels (vibration, rotation,..)  Combined with associated processes Would we allow search of other processes independently of lines ?

Access to Lines: SLAP What information do we retrieve from a service implementing SLAP?  Wavelength : mandatory  Initial/Final ChemicalElement : should Name or atomicSymbol/formula : should  Initial/Final Level : should QuantumState : should energy, statWeight : should  Einstein A : should  Optional : everything else

Access to Lines: questions Registry parameters?  Wavelength range  Keywords = energies, atoms or molecules, processes Practically how should we proceed ?  Some DB will implement VO, otherwise create VO providers  Create Web Services and vizualization tools with filters

Milestones : rst Draft « Atomic and Molecular Lines Data Model » : July 2005 Agree on SLAP : July 2005 Get inputs from community : until Sept. 05 Implement simple prototype : Next Interop. Extend DM: Provenance,.. Queries : 2006

Contacted people Physicists, Databases, Astronomers GEISA: N. Husson-Jacquinet HITRAN: L. Rothman CDMS: S. Schlemmer JPL: J. Pearson UMIST: T. Millar CHIANTI: P. Young DREAM: P. Quinet TOPBase: C. Zeippen NIST: F. Lovas, Y. Ralchenko NIFS: T. Kato IEAE: B. Clark KAERI: Y.-J. Rhee ATOMDB: N. Brickhouse D. Schwenke J. Tennyson A bunch of french spectroscopists J. Aboudarham (solar) B. Plez (stars) J. Cernicharo (ISM) F. Valdes (calibration package)