Experimental investigation and nanosecond imaging of streamers T.M.P. Briels, E.M. van Veldhuizen, U. Ebert Workshop Leiden, 9-13 May 2005.

Slides:



Advertisements
Similar presentations
Ivana Halamová 1, Anton Nikiforov 2, František Krčma 1, Christophe Leys 2 1 Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University.
Advertisements

Machine Tools And Devices For Special Technologies Plasma machining Slovak University of Technology Faculty of Material Science and Technology in Trnava.
S High Voltage Engineering S Suurjännitetekniikka
GENERATION OF PIN-HOLE DISCHARGES IN LIQUIDS František Krčma, Zdenka Kozáková, Michal Vašíček, Lucie Hlavatá, Lenka Hlochová Faculty of Chemistry, Brno.
EXPERIMENTAL STUDY OF EM RADIATION FROM THE FASTER- THAN-LIGHT VACUUM MACROSCOPIC SOURCE A. V. Bessarab, S.P. Martynenko, N.A. Prudkoi, A.V. Soldatov*,
Laboratory experiments on positive streamer properties S. Nijdam 1, E.M. van Veldhuizen 1, U. Ebert 1,2 1 ) Eindhoven University of Technology, Department.
Analysis & Selection of Ignition System P M V Subbarao Professor Mechanical Engineering Department Strong and Reliable Ignition Ensures Efficient Combustion.
Chapter 3 HV Insulating Materials: Gases Air is the most commonly used insulating material. Gases (incl. air) are normally good as electrical insulating.
G.V. Naidis Institute for High Temperatures Russian Academy of Sciences Moscow, Russia Lorentz Center workshop, Leiden, October 2007 Simulation of the.
Parametric Study of the Ignition of Metal Powders by Electric Spark Graduate Mentor: Ervin Beloni Faculty Mentor: Prof. Edward Dreizin Bhavita Patel July.
A new method for producing nonspherical cavitation bubble using flexible electrodes Bai Lixin, Xu Wei-lin, Deng Jingjun, Li Chao, Xu Delong.
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
Pin hole discharge creation in Na 2 SO 4 water solution L. Hlavatá 1, R. Serbanescu 2, L. Hlochová 1, Z. Kozáková 1, F. Krčma 1 1 Brno University of Technology,
Conductors and Dielectrics in Static Electric Fields
1 Efficient streamer plasma generation Guus Pemen, Hans Winands, Liu Zhen, Dorota Pawelek, Bert van Heesch Eindhoven University of Technology, Department.
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
Investigation of pulsed electrical discharges at atmospheric pressure in porous media and alveolar structure ANR/CNRS program LE DELLIOU Pierre Laboratoire.
STREAMER DYNAMICS IN A MEDIA CONTAINING DUST PARTICLES* Natalia Yu. Babaeva and Mark J. Kushner Iowa State University Department of Electrical and Computer.
Ignition Studies of Low-Pressure Discharge Lamps M. Gendre - M. Haverlag - H. van den Nieuwenhuizen - J. Gielen - G. Kroesen Friday, March 31 st 2006 Experiments.
CLIC Breakdown Workshop – CERN, May / 13 Delay Times in Breakdown Triggering CERN, TS-MME Antoine Descoeudres, Sergio Calatroni, Mauro Taborelli.
Smoke Particle Velocity Measurements in Point to Plane Corona Discharges Noureddine ZOUZOU* Eric MOREAU Gérard TOUCHARD Laboratoire d’Etudes Aérodynamiques.
CERN DC Spark System Capabilities Anders Korsbäck, BE-RF-LRF University of Helsinki.
Experimental study of strong shocks driven by compact pulsed power J. Larour 1, J. Matarranz 1, C. Stehlé 2, N. Champion 2, A. Ciardi 2 1 Laboratoire de.
Vacuum Technology in Electrical Switches
TRIGGERING EXCIMER LASERS BY PHOTOIONIZATION FROM A CORONA DISCHARGE* Zhongmin Xiong and Mark J. Kushner University of Michigan Ann Arbor, MI USA.
Recent FETS Ion Source Measurements UK Neutrino Factory Plenary Meeting 8-9 June 2010 Rutherford Appleton Laboratory Dan Faircloth Faircloth.
LIGHTNING INITIATION FROM AIRCRAFT IN A TROPOSPHERE N.L. Aleksandrov E.M. Bazelyan Yu.P. Raizer Russia Moscow.
Test mass charge relaxation V.P.Mitrofanov, P.E.Khramchenkov, L.G.Prokhorov Moscow State University LIGO/VIRGO LSC Meeting, Baton Rouge, March 2007 G Z.
CLIC Workshop – CERN, October / 17 DC breakdown experiments for CLIC CERN, TS-MME Antoine Descoeudres, Trond Ramsvik, Sergio Calatroni, Mauro Taborelli.
Saffman-Taylor streamer discharges
Discharge tube phenomena Electric discharge tube.
The quantify of widely used chemicals in an exhaust gas is also limited. Corona-discharge treatment of an exhaust gas containing methanol Masaomi Kikuchi.
1 An investigation into the breakdown mechanisms of a triggered water gap switch Mohsen Saniei Institute for Energy and Environment University of Strathclyde.
Damping of the dust particle oscillations at very low neutral pressure M. Pustylnik, N. Ohno, S.Takamura, R. Smirnov.
Effect of Humidity on Partial Discharge Characteristics Zainuddin Nawawi* Yuji Muramoto Naohiro Hozumi and Masayuki Nagao Proceedings of the 7 th International.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
老師:戴 子 堯 學生:陳 立 偉 日期: Outline INTRODUCTION THE DRY EDM PROCESS EXPERIMENTAL SETUP CONCLUSIONS 2.
DC Spark Developments Nick Shipman - Thursday, 16 August
Streamers, sprites, leaders, lightning: from micro- to macroscales Workshop, Oct. 8-12, 2007, Lorentz Centre Organizers: Ute Ebert (CWI Amsterdam, TU Eindhoven),
Pre-breakdown and Breakdown Phenomena on Contacts in Vacuum Interrupters From Edgar Dullni’s Presentation ABB Group.
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
Capacitance The potential of a conductor and the charge on it are directly proportional to eachother.
Study of gas mixture containing SF6 for the OPERA RPCs A.Paoloni, A. Mengucci (LNF)
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
SMJE 2103 Overvoltage, Electrical Insulation and Protection Devices.
Kévin Pepitone 1CLIC workshop, CERN, January 2016 Kevin PEPITONE, BE-RF LEETCHI: Drive Beam Electron Source.
Systematic studies for microbulk detectors E. Ferrer Ribas, A. Giganon, Y. Giomataris, FJ Iguaz, T. Papaevangelou (Saclay) A. Gris, R. de Oliveira (CERN)
Design of Ignition System for SI Engines P M V Subbarao Professor Mechanical Engineering Department A Successful Ignition leads to Efficient Combustion…
MODULE 1 Introduction to Electrical Discharges
TCT measurements with strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž 1,2, Marko.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
Designing of a Simple, High performance Nitrogen laser for Laser Induced Florescence (LIF) studies   N Shafudah, and S Singh University of Namibia, Physics.
Exploring streamer variability in experiments
Discharge-assisted LIBS and ablation-induced current pulses.
Low Energy Discharges in Liquids
Influence of Depth of Cathode Arc-remelted Layer on Vacuum Insulation
A study of the effect of salinity on pulsed arc discharge in water
Pulsed DC System Facilities
Generation of a Strong Pressure Wave
Participation IAP NAS of Ukraine in understanding of vacuum breakdown phenomena Iaroslava Profatilova, V.Baturin, O. Karpenko.
Centrum Wiskunde & Informatica, Amsterdam
Breakdown instances from open-shutter camera
High Rep Rate Circuits 2 and 3 specification/Wish List
ELEC-E8409 HIGH VOLTAGE ENGINEERING
Overview of High Pulsed Power domain and their applications
Comparative study on discharge conditions in micro-hole electrical discharge machining of tungsten carbide (WC-Co) material Hyun-Seok TAK 1 , Chang-Seung.
Basic Principles for Design of Ignition Systems
Results of A Compact Reflex Triode With Multi Cavity Adjustment
The Experimental Study on Vacuum Breakdowns by Optical Diagnosis
Presentation transcript:

Experimental investigation and nanosecond imaging of streamers T.M.P. Briels, E.M. van Veldhuizen, U. Ebert Workshop Leiden, 9-13 May 2005

Introduction High electric field, non conducting medium  narrow ionised channels: streamers Nature: e.g. sprite discharges Industry: e.g. gas and water cleaning Presentation: - positive streamers - point-plane gap - air

Contents Experimental setup Fast photographs: –shape of streamers as function of - voltage - electrode gap length - pressure –diameters of streamers Evolution of current and voltage: –energy of streamers as function of - voltage - electrode gap length - pressure Influence of the electric circuit Conclusions and future plans

Experimental setup R 1, R 2 = 25 M  R 3 = 1 k  R 4 = 2.75  C = 250 pF

Experimental setup Positive streamers Gap: mm Point-plane Voltage: 0-40 kV Rise time: ~ 40 ns Pressure: bar Air

Measurements: photographs 40 mm gap 30 kV air long exposure time: 300 ns Anode Cathode

Measurements: photographs 40 mm gap 30 kV air short exposure time: 2 ns

Measurements: photographs Exposure: 300 ns 50 ns 10 ns 2 ns (0 < t < 300 ns) (50 < t < 100 ns) (50 < t < 60 ns) (46 < t < 48 ns)

Photographs: voltage Increase voltage  increase number of streamers  increase diameters  more streamers bridge gap 25 mm 7.5 kV 12.5 kV 17.5 kV air, 1 bar

Photographs: electrode gap length Decrease gap  pattern close to anode similar Streamer pattern determined by local electric field, not by averaged electric field air, 1 bar, 7.5 kV

Photographs: pressure Decrease pressure  increase diameter  number at anode tip similar 1000 mbar 400 mbar 200 mbar 100 mbar air, 40 mm gap, 10 kV

Measurement of diameter Measurement at: - FWHM - single streamer - in focus - no return stroke Statistical scatter: factor 3 – 4 Here evaluation with long exposure time 400 mbar, 25 kV, 40 mm gap

Diameter: electrode gap length Increase V  increase diameter Varying gap  diameters similar (e.g. at 15 kV) air, 1 bar

Diameter: pressure Voltage increase  diameter increase Pressure increase  diameter decrease air, 40 mm gap

Diameter: pressure Roughly: diameter ~ 1/pressure air, 40 mm gap

Measurement of energy I capacitive = C g *dV/dt Energy V I capacitive air, 1 bar, 15 kV, 17 mm gap I corona = I measured – I capacitive I measured

Energy: electrode gap length Smallest gap  highest energy (backstroke?) air, 1 bar [student Bert Lodewijks]

Energy: pressure Pressure decrease  energy increase air, 17 mm gap

Electric circuit d = 1 – 2 mm thick d ~ 1 mm thin d = 200 – 400  m d = 200 – 400  m Capacitor supply: - V = 40 kV - I ~ 1 A; J ~ 1 A / mm 2 - E per pulse ~ 5 mJ current duration: ~ 200ns TLT-supply: - V = 45 – 50 kV - I ~ 60 A; J ~ 1 A / mm 2 - E per pulse ~ 60 mJ current duration ~ 50 ns [PhD-student Lukas Grabowski]

Conclusions Increase voltage  increase number of streamers, diameters, energy  more streamers bridge gap Increase gap  similar streamer pattern  decrease energy Increase pressure  decrease diameter (diameter ~ 1/pressure?)  similar streamer pattern at tip  decrease energy Influence power supply: thin or thick streamers

Future Negative streamers Different gases (N 2, Ar, O 2 ) Larger electrode gaps Time resolved photographs Optical fibers Laser triggering Homogeneous electric field argon – 6 kV no streamer? argon kV air kV Aim: clean characterisation of short time streamer dynamics