광합성 (photosynthesis) H 2 O + CO 2 (h (CH 2 O) + O 2 ▪686 kcal/mole needed for glucose synthesis ▪114 kcal/mole for CO 2 fix ▪10 17 kcal stored annually ▪10 10 tons C stored chlorophyll carotenoids
Photosynthesis changes sunlight into chemical energy, splits water to liberate O2, and fixes CO2 into sugar
Chloroplast ultrastructure: 1. outer membrane 2. intermembrane space 3. inner membrane (1+2+3: envelope) 4. stroma (aqueous fluid) 5. thylakoid lumen (inside of thylakoid) 6. thylakoid membrane 7. granum (stack of thylakoids) 8. thylakoid (lamella) 9. starch 10. ribosome 11. plastidial DNA 12. plastoglobule (drop of lipids)
Light-dependent reactions of photosynthesis at the thylakoid membrane
Overview of the Calvin cycle and carbon fixation
화학합성 (chemosynthesis) Hydrogen sulfide chemosynthesis 12H 2 S + 6CO 2 → C 6 H 12 O 6 + 6H 2 O + 12S 97 kcal/mole for glucose synthesis 16kcal/mole for CO 2 fix Chlorobrium Thiosprillum j&q=&esrc=s&frm=1&source=images &cd=&ved=0CAMQjxw&url=http%3 A%2F%2Fwww.mokkka.hu%2Fdrupal %2Fen%2Fnode%2F2855&ei=pa8TVe PzMeK2mAWL-ICgAQ&bvm=bv ,d.dGY&psig=AFQjCNEG-LDq FFe1QA8-HK9Nh9NYl2SUUg&ust= &cad=rjt
Productivity Rain forest: 1-2 kg C/m 2 yr Tundra forest: 0.1 kg C/m 2 yr Ocean: 1.5 – 7.0 * metric ton/yr Land: * metric ton/yr (more C org is stored than in ocean, but the productivity is about the same) Total biomass C org = 30 – tons
Figure 6. Global biogeochemical cycle of carbon as carbon dioxide. Rates or fluxes (denoted by arrows) between land, ocean, and atmosphere reservoirs a re in millions of metric tons of carbon (MTC) per year. The reservoir size of carbon dioxide is in millions of tons of carbon. The “Missing” is the amount of global CO2 emissions taken up by the ocean and terrestrial realms. The re lative amount of “Missing” uptake by ocean and terrestrial realm, split evenl y in this representation, is still debated although it appears now that the terre strial realm is a slightly bigger sink for the excess CO2.
Photic zone soluble organic matter 89% Particulate 9% phytoplankton 2% zooplankton, fish 0.002% phytoplanktons: diatoms, cocolithophores, dinoflagellates, botryococcus, etc. zooplanktons: coral pods, radiolarias, foraminifera, etc.
Fig.A4 Change of light intensity and tropical carbonate production with water depth.
Plots of typical water properties in the open ocean. The thermocline is where the temperature changes rapidly, the halocline is where the salinity changes rapidly and the pycnocline is where the density changes rapidly. UCAR – Windows to the Universe.
Comparison of OM Aquatic (Marine & Lacustrine) Terrestrial 1. LipidsImportant (≤20%)Minor (seeds, fruits, pollen, spores, cuticles on leaves) 2. LigninAbsentMajor (>5-30%) 3. CelluloseAbsentMajor (50-60%) 4. ProteinMajor (<50%)≤10% 5. CarbohydratesImportant (variable)Variable 6. H/C1.7 – (land plants) 7. C 5‰ heavier
Chemical Composition of Biomass n-Alkanes Carbon preference index (CPI) Land plant: mainly odd, C 23 -C 33 Trophic dependence EutrophicMesotrophicOligotrophic nC 17 nC 17, nC nC 27 -C 31 CPI=2-4CPI=2-5,6CPI=5±
** Composition of OM in sediments determined by ** Influx of allochthonous OM Autochthonous produdction Diagenesis (thermal, biological influence) Preservation (some shows selectivity)
** Pristane/phytane ratio ** biomarker parameter for the assessment of redox conditions during sediment accumulation The ratios of phytanic acid to phytol (plus dihydrophytol) in Dead Sea sediments were 4.7 and 5.5 in two oxidizing environments and 1.1 and 3.4 in two reducing environments (Nissenbaum, A., Baedecker, M. J., and Kaplan, I. R., Geochim. Cosmochim. Acta, 36, 709 (1972).
Fatty acids R-COOH R: higher plant > C 20, bacteria, plankton C
Common nameChemical structureΔxΔx C:DC:Dn−xn−x Myristoleic acidCH 3 (CH 2 ) 3 CH=CH(CH 2 ) 7 COOHcis-Δ 9 14:1n−5 Palmitoleic acidCH 3 (CH 2 ) 5 CH=CH(CH 2 ) 7 COOHcis-Δ 9 16:1n−7 Sapienic acidCH 3 (CH 2 ) 8 CH=CH(CH 2 ) 4 COOHcis-Δ 6 16:1n−10 Oleic acidCH 3 (CH 2 ) 7 CH=CH(CH 2 ) 7 COOHcis-Δ 9 18:1n−9 Elaidic acidCH 3 (CH 2 ) 7 CH=CH(CH 2 ) 7 COOHtrans-Δ 9 18:1n−9 Vaccenic acidCH 3 (CH 2 ) 5 CH=CH(CH 2 ) 9 COOHtrans-Δ 11 18:1n−7 Linoleic acidCH 3 (CH 2 ) 4 CH=CHCH 2 CH=CH(CH 2 ) 7 COOHcis,cis-Δ 9,Δ 12 18:2n−6 Linoelaidic acidCH 3 (CH 2 ) 4 CH=CHCH 2 CH=CH(CH 2 ) 7 COOHtrans,trans-Δ 9,Δ 12 18:2n−6 α-Linolenic acidCH 3 CH 2 CH=CHCH 2 CH=CHCH 2 CH=CH(CH 2 ) 7 COOHcis,cis,cis-Δ 9,Δ 12,Δ 15 18:3n−3 Arachidonic acid CH 3 (CH 2 ) 4 CH=CHCH 2 CH=CHCH 2 CH=CHCH 2 CH=CH (CH 2 ) 3 COOH NIST NIST cis,cis,cis,cis-Δ 5 Δ 8,Δ 11,Δ :4n−6 Eicosapentaenoic acid CH 3 CH 2 CH=CHCH 2 CH=CHCH 2 CH=CHCH 2 CH=CHC H 2 CH=CH(CH 2 ) 3 COOH cis,cis,cis,cis,cis-Δ 5,Δ 8,Δ 1 1,Δ 14,Δ 17 20:5n−3 Erucic acidCH 3 (CH 2 ) 7 CH=CH(CH 2 ) 11 COOHcis-Δ 13 22:1n−9 Docosahexaenoic acid CH 3 CH 2 CH=CHCH 2 CH=CHCH 2 CH=CHCH 2 CH=CHC H 2 CH=CHCH 2 CH=CH(CH 2 ) 2 COOH cis,cis,cis,cis,cis,cis-Δ 4,Δ 7,Δ 10,Δ 13,Δ 16,Δ 19 22:6n−3 Examples of Unsaturated Fatty Acids
Common nameChemical structureC:DC:D Caprylic acidCH 3 (CH 2 ) 6 COOH8:0 Capric acidCH 3 (CH 2 ) 8 COOH10:0 Lauric acidCH 3 (CH 2 ) 10 COOH12:0 Myristic acidCH 3 (CH 2 ) 12 COOH14:0 Palmitic acidCH 3 (CH 2 ) 14 COOH16:0 Stearic acidCH 3 (CH 2 ) 16 COOH18:0 Arachidic acidCH 3 (CH 2 ) 18 COOH20:0 Behenic acidCH 3 (CH 2 ) 20 COOH22:0 Lignoceric acidCH 3 (CH 2 ) 22 COOH24:0 Cerotic acidCH 3 (CH 2 ) 24 COOH26 Examples of Saturated Fatty Acids
Sterane Land plants: C 28, C 29 dominant Phyto-, zooplankton: C 29 dominant Sterols sterane (by reduction) script=sci_arttext&tlng=en 7.figures-only Problems: thermal effect, gradual boundary
A ternary diagram illustrating compositional variations and affinities of all twenty solvent extract samples using the relative abundance of C27- C28-C29 regular steranes from the m/z 218 mass fragmentogram data (Fig. 6 ⇑, Table 2 ⇑ ). The three oil families are identified using the symbols following Figure 2 ⇑. The empirically drawn dividing line between marine and non-marine sourced crude oils follows previous work (Peters and Moldown, 1993).
Sterane Land plants: C 28, C 29 dominant Phyto-, zooplankton: C 29 dominant Sterols sterane (by reduction) script=sci_arttext&tlng=en 7.figures-only Problems: thermal effect, gradual boundary