Constraints on the Production of Nitric Oxide by Lightning as Inferred from Satellite Observations Randall Martin Dalhousie University With contributions.

Slides:



Advertisements
Similar presentations
Inferring SO 2 and NO x Emissions from Satellite Remote Sensing Randall Martin with contributions from Akhila Padmanabhan, Gray O’Byrne, Sajeev Philip.
Advertisements

Aircraft GC 2006 ems GC Streets ems East Asian contrib Lightning contrib Aircraft GC 2006 ems GC Streets ems No Asian No Lightning Long-range transport.
THE NITROGEN CYCLE. TOPICS FOR TODAY 1.The Nitrogen Cycle 2.Fixed Nitrogen in the Atmosphere 3.Sources of NOx 4.What about N 2 O? 5.Nitrogen Cycle: on.
Space-Based Constraints on Lightning NOx Emissions Randall V. Martin 1,2, Bastien Sauvage 1, Ian Folkins 1, Christopher Sioris 2,3, Christopher Boone 4,
Interpreting MLS Observations of the Variabilities of Tropical Upper Tropospheric O 3 and CO Chenxia Cai, Qinbin Li, Nathaniel Livesey and Jonathan Jiang.
Integrating satellite observations for assessing air quality over North America with GEOS-Chem Mark Parrington, Dylan Jones University of Toronto
The Atmosphere: Oxidizing Medium In Global Biogeochemical Cycles EARTH SURFACE Emission Reduced gas Oxidized gas/ aerosol Oxidation Uptake Reduction.
Long-range transport of NO y and ozone from Asia Thomas Walker Dalhousie University 3 rd GEOS-Chem Users' Meeting April 13, 2007.
THE ATMOSPHERE: OXIDIZING MEDIUM IN GLOBAL BIOGEOCHEMICAL CYCLES
Adjoint inversion of Global NOx emissions with SCIAMACHY NO 2 Changsub Shim, Qinbin Li, Daven Henze, Aaron van Donkellaar, Randall Martin, Kevin Bowman,
Constraints on the Production of Nitric Oxide by Lightning as Inferred from Satellite Observations Randall Martin Dalhousie University With contributions.
This Week—Tropospheric Chemistry READING: Chapter 11 of text Tropospheric Chemistry Data Set Analysis.
INTERANNUAL VARIABILITY IN SOIL NITRIC OXIDE EMISSIONS OVER THE UNITED STATES AS VIEWED FROM SPACE Rynda Hudman, Ashley Russell, Luke Valin, Ron Cohen.
Is there a Summertime Middle East Ozone Maximum in the Upper Troposphere? Matthew Cooper, Randall Martin, Bastien Sauvage, OSIRIS Team, ACE Team GEOS-Chem.
Indirect Validation of Tropospheric Nitrogen Dioxide Retrieved from the OMI Satellite Instrument: Insight into the Seasonal Variation of Nitrogen Oxides.
Assessing the Lightning NO x Parameterization in GEOS-Chem with HNO 3 Columns from IASI Matthew Cooper 1 Randall Martin 1,2, Catherine Wespes 3, Pierre-Francois.
Trans-Pacific Transport of Ozone and Reactive Nitrogen During Spring Thomas W. Walker 1 Randall V. Martin 1,2, Aaron van Donkelaar.
Validation of a Satellite Retrieval of Tropospheric Nitrogen Dioxide Randall Martin Dalhousie University Smithsonian Astrophysical Observatory Daniel Jacob.
Estimating Ozone Production Efficiency from Space Matthew Cooper 1, Randall Martin 1,2, Bastien Sauvage 3, Chris Boone 4, Kaley Walker 4,5,Peter Bernath.
Randall Martin Space-based Constraints on Emission Inventories of Nitrogen Oxides Chris Sioris, Kelly Chance (Smithsonian Astrophysical Observatory) Lyatt.
Satellite Observations of Tropospheric Gases and Aerosols Randall Martin With contributions from: Rongming Hu (Dalhousie University) Chris Sioris, Xiong.
Using Satellite Data to Infer Surface Emissions and Boundary Layer Concentrations of NO x (and SO 2 ) Randall Martin With contributions from: Xiong Liu,
Randall Martin Space-based Constraints on Emissions of Nitrogen Oxides With contributions from: Chris Sioris, Kelly Chance (Smithsonian Astrophysical Observatory)
Satellite and Aircraft Based Constraints on NO X Emissions Randall Martin Chris Sioris Kelly Chance Tom Ryerson Andy Neuman Ron Cohen UC Berkeley Aaron.
Retrieval and Interpretation of Tropospheric Observations from GOME Randall Martin Daniel Jacob Paul Palmer Sushil Chandra Jerry Ziemke Mian Chin Kelly.
Dalhousie University Department of Physics and Atmospheric Science Materials Science Biophysics Condensed Matter Physics Atmospheric Science Research in.
Seasonal variability of UTLS hydrocarbons observed from ACE and comparisons with WACCM Mijeong Park, William J. Randel, Louisa K. Emmons, and Douglas E.
The GEOS-CHEM Simulation of Trace Gases over China Li ZHANG and Hong LIAO Institute of Atmospheric Physics Chinese Academy of Sciences April 24, 2008.
ANALYSIS OF TROPOSPHERIC OBSERVATIONS FROM GOME AND TOMS Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer Harvard University Kelly Chance, Thomas.
Application of Satellite Observations for Timely Updates to Bottom-up Global Anthropogenic NO x Emission Inventories L.N. Lamsal 1, R.V. Martin 1,2, A.
QUESTIONS 1. How does the thinning of the stratospheric ozone layer affect the source of OH in the troposphere? 2. Chemical production of ozone in the.
Long-range transport of NO y and O 3 Thomas Walker Dalhousie University Department of Physics & Atmospheric Science December 6, 2006.
QUESTIONS 1. How does the thinning of the stratospheric ozone layer affect the source of OH in the troposphere? 2. Chemical production of ozone in the.
Space-based Constraints on Global SO 2 Emissions and Timely Updates for NO x Inventories Randall Martin, Dalhousie and Harvard-Smithsonian Chulkyu Lee,
SATELLITE OBSERVATIONS OF ATMOSPHERIC CHEMISTRY Daniel J. Jacob.
Space-based insight into the global sources of nitrogen oxides with implications for tropical tropospheric ozone Randall Martin Dalhousie University With.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Two New Applications of Satellite Remote Sensing: Timely Updates to Emission Inventories and Constraints on Ozone Production Randall Martin, Dalhousie.
Processes driving O 3 within the troposphere The Tropics / The Atlantic Bastien Sauvage et al.
Ground-level NO 2 Concentrations Inferred from OMI Lok Lamsal, Dalhousie University Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar,
Contributions from TES and OMI to tropospheric chemistry and air quality: a retrospective Daniel J. Jacob.
Picture: METEOSAT Oct 2000 Tropospheric O 3 budget of the South Atlantic region B. Sauvage, R. V. Martin, A. van Donkelaar, I. Folkins, X.Liu, P. Palmer,
USE OF GEOS-CHEM BY SMITHSONIAN ASTROPHYSICAL OBSERVATORY AND DALHOUSIE UNIVERSITY Randall Martin Mid-July SAO Halifax, Nova Scotia.
Transport of ozone and reactive nitrogen during INTEX-B Thomas W. Walker M. Sc. thesis defence August 30, 2007 Photo from Environment Canada OMI Tropospheric.
Impact of OMI data on assimilated ozone Kris Wargan, I. Stajner, M. Sienkiewicz, S. Pawson, L. Froidevaux, N. Livesey, and P. K. Bhartia   Data and approach.
Analysis of Satellite Observations to Estimate Production of Nitrogen Oxides from Lightning Randall Martin Bastien Sauvage Ian Folkins Chris Sioris Chris.
Assimilated Inversion of NO x Emissions over East Asia using OMI NO 2 Column Measurements Chun Zhao and Yuhang Wang School of Earth and Atmospheric Science,
TESTING GLOBAL MODELS OF INTERCONTINENTAL POLLUTION TRANSPORT USING AIRCRAFT AND SATELLITE OBSERVATIONS Daniel J. Jacob with Mathew J. Evans, T. Duncan.
LaRC Air Quality Applications Group Sushil Chandra Jerry Ziemke
Randall Martin Dalhousie University
EMIS: Improve Emission Inventories of Environmentally Relevant Species
TOP-DOWN CONSTRAINTS ON EMISSION INVENTORIES OF OZONE PRECURSORS
Harvard-Smithsonian Center for Astrophysics
Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer
Randall Martin Aaron Van Donkelaar Daniel Jacob Dorian Abbot
Evaluating Lower Tropospheric Ozone Simulations Using GOME/SCIAMACHY/OMI Observations of NO2 and HCHO Randall Martin Aaron Van Donkelaar Chris Sioris.
Estimating Ground-level NO2 Concentrations from OMI Observations
Using Satellite Observations to Understand Tropospheric Ozone
Constraining Emissions with Satellite Observations
Satellite Remote Sensing of Ozone-NOx-VOC Sensitivity
Space-based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions Randall Martin Aaron Van Donkelaar Arlene Fiore.
OMI Tropospheric NO2 in China
Kelly Chance Smithsonian Astrophysical Observatory
Estimation of Emission Sources Using Satellite Data
SATELLITE OBSERVATIONS OF OZONE PRECURSORS FROM GOME
Effects of global change on U.S. ozone air quality
Daniel Jacob Paul Palmer Mathew Evans Kelly Chance Thomas Kurosu
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
HO2 O3 NO OH NO2 hv Pyro-convection NOx, RH, CO O3 Visibility
Randall Martin Mid-July
Presentation transcript:

Constraints on the Production of Nitric Oxide by Lightning as Inferred from Satellite Observations Randall Martin Dalhousie University With contributions from Bastien Sauvage & Ian Folkins: Dalhousie Univeristy Christopher Sioris: Environment Canada Christopher Boone and Peter Bernath: University of Waterloo Jerry Ziemke: NASA Goddard

Global Lightning NOx Source Remains Uncertain Constrain with Top-down Satellite Observations SCIAMACHY Tropospheric NO 2 Columns ACE-FTS Limb HNO 3 in Upper Troposphere OMI & MLS Both instruments onboard Aura satellite Tropospheric O 3 Lightning: responsible for >35% of global OH & tropical tropospheric O 3 Sauvage et al., 2007

Current Estimate of Annual Global NOx Sources As Used In GEOS-Chem molecules N cm -2 s -1 Lightning Global: 6.0 Tg N yr -1 Tropics: 4.4 Tg N yr -1 Other NOx sources: (fossil fuel, biofuel, biomass burning, soils) 39 Tg N yr -1

Tropospheric NO 2 Columns Retrieved from SCIAMACHY Retrieval Uncertainty ±(5x10 14 molec cm %) Tropospheric NO 2 (10 15 molecules cm -2 ) Nov - Apr May - Oct NO / NO2   w Altitude Data from Martin et al., 2006

Simplified Chemistry of Nitrogen Oxides Exploit Longer Lifetimes in Upper Troposphere NO NO 2 NOx lifetime < day Nitrogen Oxides (NO x ) Boundary Layer NO / NO2   with altitude hv NO NO 2 O 3, RO 2 hv HNO 3 NOx lifetime ~ week lifetime ~ weeks Ozone (O 3 ) lifetime ~ month Upper Troposphere Ozone (O 3 ) lifetime ~ days HNO 3 O 3, RO 2

Strategy 1) Use GEOS-Chem model to identify species, regions, and time periods dominated by the effects of lightning NOx production 2) Constrain lightning NOx source by interpreting satellite observations in those regions and time periods

Simulated Monthly Contribution of Lightning, Soils, and Biomass Burning to NO 2 Column Martin et al., 2007

Tropospheric NO 2 (10 14 molec cm -2 ) Annual Mean NO 2 Column at Locations & Months with >60% from Lightning, 60% from Lightning, <25% from Surface Sources Meridional Average SCIAMACHY (Uses 15% of Tropical Observations) GEOS-Chem with Lightning (8% bias, r=0.75) GEOS-Chem without Lightning (-60% bias) NO 2 Retrieval Error ~ 5x10 14 molec cm -2 GEOS-Chem with Lightning (6±2 Tg N yr -1 ) SCIAMACHY GEOS-Chem without Lightning Martin et al., 2007

ACE HNO 3 over hPa for Mar 2004 – Feb 2006 HNO 3 Mixing Ratio (pptv) V2.2 reprocessed data

GEOS-Chem Calculation of Contribution of Lightning to HNO 3 HNO 3 from LightningFraction from Lightning Focus on hPa HNO 3 With Lightning (6±2 Tg N yr -1 ) No Lightning Fraction of HNO 3 from Lightning Jan Jul Martin et al., 2007

Annual Mean HNO 3 Over hPa at Locations & Months with > 60% of HNO 3 from Lightning Meridional Average ACE (Uses 72% of Tropical Measurements) GEOS-Chem with Lightning (-6% bias, r=0.81) GEOS-Chem without Lightning (-77% bias) HNO 3 Mixing Ratio (pptv) ACE-FTS v2.2 research ______ reprocessed - - GEOS-Chem with Lightning (6±2 Tg N yr -1 ) GEOS-Chem without Lightning HNO 3 Retrieval Error ~35 pptv Martin et al., reprocessed

OMI/MLS Tropospheric Ozone Column Jan Jul Data from Ziemke et al. (2006)

Calculated Monthly Contribution of Lightning to O 3 Column O 3 Column from LightningColumn Fraction from Lightning Martin et al., 2007

Annual Mean Tropospheric O 3 Columns at Locations & Months with > 40% of Column from Lightning Meridional Average OMI/MLS (Uses 15% of Tropical Measurements) GEOS-Chem with Lightning (-1% bias, r=0.85) GEOS-Chem without Lightning (-45% bias) Tropospheric O 3 (Dobson Units) OMI/MLS GEOS-Chem with Lightning (6±2 Tg N yr -1 ) GEOS-Chem without Lightning O 3 Retrieval Error < 5 Dobson Units Martin et al., 2007

Lightning NOx Dominant Source for Tropical Tropospheric Ozone Sensitivity to decreasing NOx emissions by 1% for each source ΔDU DJF MAM JJA SON Lightning Ozone Production Efficiency = 3 times OPE of each surface source 6 Tg N/yr Sauvage et al., 2007

Simulated Annual Mean Characteristics O3O3 ppb NO x ppb O 3 production during transport and subsidence over South Atlantic basin Injection of NOx (mostly from lightning) into the upper troposphere Sauvage et al., 2007

Conclusions Global lightning NOx source likely between 4 – 8 Tg N / yr 6 Tg N / yr is a best estimate Further refinement will require - vertically-resolved constraint - more observations (e.g. HNO 3 ) - improved satellite retrieval accuracy (e.g. NO 2 ) - stronger constraints on midlatitude source - model development to better represent processes (e.g. lightning NOx representation, vertical transport) Acknowledgements CFCAS and NASA