Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
The GEO 600 Detector Andreas Freise and the GEO 600 Team University of Hannover May 20, 2002.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Cascina, January 24, 2005 Status of GEO600 Joshua Smith for the GEO600 team.
Polarization Techniques for Interferometer Control Peter Beyersdorf National Astronomical Observatory of Japan LSC March 2002 Advanced Configurations LIGO-G Z.
Optics of GW detectors Jo van den Brand
Stefan Hild and A.Freise Advanced Virgo meeting, December 2008 Preliminary Thoughts on the optimal Arm Cavity Finesse of Advanced Virgo.
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
Towards dual recycling with the aid of time and frequency domain simulations M. Malec for the GEO 600 team Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut.
GEO600 Harald Lück Ruthe, Worldwide Interferometer Network.
Stefan Hild 1ILIAS WG1 meeting, Cascina, November 2006 Comparison of tuned and detuned Signal-Recycling Stefan Hild for the GEO-team.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) Institut für Atom- und Molekülphysik Detector Characterization of GEO 600 during.
G R DC Readout for Advanced LIGO P Fritschel LSC meeting Hannover, 21 August 2003.
Joshua Smith December 2003 Detector Characterization of Dual-Recycled GEO600 Joshua Smith for the GEO600 team.
Design of Stable Power-Recycling Cavities University of Florida 10/05/2005 Volker Quetschke, Guido Mueller.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Interferometer Control Matt Evans …talk mostly taken from…
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Amaldi conference, June Lock acquisition scheme for the Advanced LIGO optical configuration Amaldi conference June24, 2005 O. Miyakawa, Caltech.
1 Experiences and lessons learned from interferometer simulations at GEO GWADW, Andreas Freise for Hartmut Grote, Holger Wittel and the rest.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Squeezed light and GEO600 Simon Chelkowski LSC Meeting, Hannover.
LIGO- G R Telecon on June, Mach-Zender interferometer to eliminate sidebands of sidebands for Advanced LIGO Osamu Miyakawa, Caltech.
Variable reflectivity signal-recycling mirror and control Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
LIGO- G R Sensing and control, SPIE conference, June Sensing and control of the Advanced LIGO optical configuration SPIE conference at.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
LSC-VIRGO joint meeting - Pisa1 Input mirrors thermal lensing effect Frequency modulation PRCL length in Virgo Some results from a Finesse simulation.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Harald Lückfor the GEO600 Comissioning team 1ILIAS Meeting, Palma, Oct Title GEO 600 Commissioning Status Based on a talk of Stefan Hild for the.
RSE Experiment in Japan Feb. 20 th, 2004 Aspen Meeting LIGO-G Z K.Somiya, O.Miyakawa, P.Beyersdorf, and S.Kawamura.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Stefan Hild 111th WG1 meeting, Hannover, January 2007 DC-Readout for GEO Stefan Hild for the GEO-team.
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
Institute for Cosmic Ray Research Univ. of Tokyo Development of an RSE Interferometer Using the Third Harmonic Demodulation LIGO-G Z Osamu Miyakawa,
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
Status of GEO600 Benno Willke for the GEO600 team ESF Exploratory Workshop Perugia, September 2005.
ILIAS - Geneve1 Input mirrors thermal lensing effect in Virgo J. Marque.
The VIRGO detection system
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
GEO Status and Prospects Harald Lück ILIAS / ETmeeting Cascina November 2008.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
White light Cavities University of Florida LIGO-G Z Stacy Wise, Guido Mueller, David Reitze, D.B. Tanner, California Institute of Technology April.
GEO600 – The output mode cleaner Mirko Prijatelj for the GEO600-Team Institute for Gravitational Physics Albert-Einstein-Institute Hannover / Germany.
Interferometer configurations for Gravitational Wave Detectors
Detuned Twin-Signal-Recycling
GEO600 Control aspects where do the error signal come from?
Thermal Compensation of the Radius of Curvature of GEO600 Mirrors
Design of Stable Power-Recycling Cavities
Homodyne readout of an interferometer with Signal Recycling
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Thermal lensing effect: Experimental measurements - Simulation with DarkF & Finesse J. Marque (Measurements analysis: M. Punturo; DarkF simulation: M.
Variable reflectivity signal-recycling mirror and control
Talk prepared by Stefan Hild AEI Hannover for the GEO-team
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut für Gravitationsphysik 9. July 2003

9. July 2003 Hartmut Grote Dual Recycling Concept two recycling cavities enhance independently the carrier light and the signal sidebands shot noise limited sensitivity is improved (typically by a factor of 10 2 to 10 3 ) MPR MSR

9. July 2003 Hartmut Grote Adjustable Sensitivity Frequency [Hz] Strain sensitivity [1/sqrt(Hz)] Therm. noise T MSR = 0,1% T MSR = 1% T MSR = 5%

9. July 2003 Hartmut Grote Dual Recycling Configuration PR cavity control (25kHz) Michelson control (300Hz) SR cavity control (400/40 Hz)

9. July 2003 Hartmut Grote PR Error Signal PR Tuning [Degree] Michelson Tuning [Degree]

9. July 2003 Hartmut Grote Problem: Lock Acquisition PR has to be locked first, but state space is limited Lock Michelson in largely detuned SR state (larger state space) MI optical gain depends on SR tuning SR tuning [Degree] Optical gain [Arb.] Michelson error signal Signal Recycling error signal

9. July 2003 Hartmut Grote SR Error Signal Small capture range (0.5nm) SR error signal is sensitive to various parameters SR demodulation phase Laser frequency with respect to PR cavity Alignment Michelson deviation from dark fringe

9. July 2003 Hartmut Grote Michelson Deviation MSR offset from operating point [nm] SR error signal [Arb.] 0 nm +1 nm -1 nm -2 nm Michelson deviation from dark fringe

9. July 2003 Hartmut Grote Lock Acquisition Dark fringe power Intra cavity power MI ESD feedback MI slow feedback SR error signal SR feedback MI error signal

9. July 2003 Hartmut Grote Summary and Outlook Established dual recycling lock at largely detuned operating point Get more frequent acquisitions Decrease pitch noise of pendulums Normalize Michelson gain “search“ for SR mirror by sweeping the operating point Get stable DR locks including SR autoalignment Tune signal recycling to nominal GW band in lock

9. July 2003 Hartmut Grote

Next Steps PR + MI locked normalize MI gain to make system more robust during SR acquisition normalize MI gain to make system more robust during SR acquisition simultanious ramping of SR modulation frequency and demodulation phase to search for SR fringe simultanious ramping of SR modulation frequency and demodulation phase to search for SR fringe Signal Recycling autoalignment Tuning down to GW band in lock

9. July 2003 Hartmut Grote MI error signal slope Nominal operating points Lock acquisition operating points

9. July 2003 Hartmut Grote More experimental issues SR error signal is sensitive to various parameters SR demodulation phase Laser frequency with respect to PR cavity Alignment Michelson deviation from dark fringe

9. July 2003 Hartmut Grote

Lock Acquisition Dark fringe power Intra cavity power MI ESD feedback MI slow feedback SR error signal SR feedback MI error signal

9. July 2003 Hartmut Grote

Laser Mode Cleaners Common arm length: (laser frequency stabilsation) Pound-Drever-Hall Dual Recycling Control 14.9 MHz 9 MHz Differential arm length: (gravitational wave signal) heterodyne detection Schnupp modulation Signal-Recycling control: a separate modulation frequency reflected beam from AR coating to laser frequency 37.2 MHz

9. July 2003 Hartmut Grote Tuneable sensitivity

9. July 2003 Hartmut Grote GEO Status July 2003 Michelson Interferometer Laser Mode Cleaners 2 W 1 W ~ 10 mW 300 W at Beam Splitter MPR final optics test optics MSR

9. July 2003 Hartmut Grote Mode Healing power recycling only: Each recycling cavity minimises the loss due to mode mismatch of the respective other with signal recycling:

9. July 2003 Hartmut Grote Mode Healing Mode healing Mirror curvature compensation MSR with T=1% yields almost perfect mode healing

9. July 2003 Hartmut Grote Control Sidebands (SR) Resonance condition in the detuned, coupled, 4-mirror cavity: f SR = 72 ·FSR SRC  9MHz Detuning the modulation frequency and/or the demodulation phase changes the SR operating point

9. July 2003 Hartmut Grote SRC Error Signal Example operating point for 200 Hz detuning

9. July 2003 Hartmut Grote From Power- to Dual Recycling MPR MSR MI Optical signals change because control sidebands and higher order TEM modes experience a coupled, 4-mirror cavity. MI arm length difference: 10 cm cavity length difference: 9 cm Transfer function for control sidebands must be maximised for various possible configurations:

9. July 2003 Hartmut Grote SRC Error Signal Largely detuned operating point for lock acquisition

9. July 2003 Hartmut Grote Detuned Dual Recycling Zeit [s] Michelson Ausgang PR Resonator Michelson Fehlersignal ESD Feedback IM Feedback SR Fehlersignal SR Feedback

9. July 2003 Hartmut Grote Power Recycling End mirrors with imperfect radius of curvature beamsplitter: „tilt“ motion

9. July 2003 Hartmut Grote Power Recycling Signals