Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

First results from the ATLAS experiment at the LHC
HARP Anselmo Cervera Villanueva University of Geneva (Switzerland) K2K Neutrino CH Meeting Neuchâtel, June 21-22, 2004.
October 14, 2009 Tsutomu Mibe ( 三部 勉) KEK 1.
New results from the CHORUS Neutrino Oscillation Experiment Pasquale Migliozzi CERN XXIX International Conference on High Energy Physics UBC, Vancouver,
The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
The CP-violation experiments NA48 at CERN Manfred Jeitler Institute of High Energy Physics of the Austrian Academy of Sciences RECFA meeting Innsbruck,
B. Lee Roberts, SPIN2004 –Trieste -11 September p. 1/54 New Results on Muon (g-2) Past, Present and Future Experiments B. Lee Roberts Department.
Is B s 0 production by neutrino interactions interesting? Presented at the Super-B factory workshop as an alternative approach Nickolas Solomey 21 April.
B. Lee Roberts, NuFact WG4: 24 June p. 1/36 Muon (g-2) Past, Present and Future B. Lee Roberts Department of Physics Boston University
Muon g-2 experimental results & theoretical developments
Basic Measurements: What do we want to measure? Prof. Robin D. Erbacher University of California, Davis References: R. Fernow, Introduction to Experimental.
Preliminary Ideas for a Near Detector at a Neutrino Factory Neutrino Factory Scoping Study Meeting 23 September 2005 Paul Soler University of Glasgow/RAL.
B. Lee Roberts, Oxford University, 19 October p. 1/55 The Muon: A Laboratory for Particle Physics Everything you always wanted to know about the.
B. Lee Roberts, PANIC05, Santa Fe, 27 October, p. 1/35 Muon (g-2) Status and Plans for the Future B. Lee Roberts Department of Physics Boston University.
B. Lee Roberts, HIFW04, Isola d’Elba, 6 June p. 1/39 Future Muon Dipole Moment Measurements at a high intensity muon source B. Lee Roberts Department.
A new method of measuring the muon g-2 Francis J.M. Farley Trinity College Dublin.
1 g-2 phase study from GEANT simulation Qinzeng Peng Advisor: James Miller Boston University Sep 28, 2004 Muon g-2 collaboration at BU: Lee Roberts, Rober.
Modern Physics LECTURE II.
September 23, 2008 Erice Cem Güçlü İstanbul Technical University Physics Department Production of electron-positron pairs by nuclear dissociation.
P Spring 2002 L9Richard Kass Four Quarks Once the charm quark was discovered SU(3) was extended to SU(4) !
Muon and electron g-2 A charged particle which has spin angular momentum s will have also a magnetic moment m. The ratio of the magnetic to angular moments.
Alain Blondel Neutrino Factory scenarios I will endeavour to address some principle design issues related to the physics use of high intensity muon beams.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Does a nucleon appears different when inside a nucleus ? Patricia Solvignon Argonne National Laboratory Postdoctoral Research Symposium September 11-12,
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Chapters 9, 11, 12 Concepts covered that will also be candidates for exam questions.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
WG4 Summary -Intense Muon Physics- Conveners Y. Semertzdis (BNL), M. Grassi (Pisa), K. Ishida (RIKEN) summary-1 for muon applications by K. Ishida.
Welcome to the CHARMS See – Tea Sunday, October 11, 2015 Release of Light Alkalis (Li, Na, K) From ISOLDE Targets Strahinja Lukić,
PRISM and Neutrino Factory in Japan Y. Kuno KEK, IPNS January 19th, 2000 at CERN.
Jae-’s class Sept 20, 2006 H.Weerts From Rutherford scattering to QCD H.Weerts Argonne National Lab. ILC = International Linear Collider May 18, 2006 Guest.
Muon g-2 Experiment at Fermilab, Liang Li, SPCS 2013 June 5 th, Shanghai Particle Physics and Cosmology Symposium - SPCS2013 The (new) muon g-2.
Muon (g-2) Experiments Matthew Wright Luo Ouyang.
1 fact03 NY June 6 th 2003 Particle physics with intense muon beams A.M. Baldini - INFN Pisa.
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
David M. Webber University of Illinois at Urbana-Champaign For the MuLan Collaboration A new determination of the positive muon lifetime to part per million.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
G-2 accelerator and cryo needs Mary Convery Muon Campus Review 1/23/13.
OPERA Neutrino Experiment Tija Sīle presentation is based on: Doktorantūras skolas “Atomāro un nepārtrauktās vides fizikālo.
B Grants-in-aid KIBAN-B (FY2014~) Magnetic Dipole Moment g-2 Electric Dipole Moment EDM Utilize high intensity.
LHCb: Xmas 2010 Tara Shears, On behalf of the LHCb group.
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
David M. Webber For the MuLan Collaboration University of Wisconsin-Madison Formerly University of Illinois at Urbana-Champaign August 12, 2011 A part-per-million.
Yannis K. Semertzidis Brookhaven National Laboratory Fundamental Interactions Trento/Italy, June 2004 Theoretical and Experimental Considerations.
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
Muonium – Physics of a Most Fundamental Atom Klaus Jungmann Kernfysisch Versneller Instituut & Rijksuniversiteit Groningen Simple Atomic System Atomic.
Muon Anomalous Magnetic Moment --a harbinger of new physics Chang Liu Physics 564.
QED, Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik.
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Precision Measurements in Muon Physics A Sampler of Fundmental Measurements.
Measurement of the Muon Anomalous Magnetic Moment to 0.7 ppm Results from the Data of 2000 Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration.
1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration and EDM Collaboration.
L. Nemenov, EXA05 Using  -  and  -K atoms for the experimental check of low-energy QCD L. Nemenov (CERN, Switzerland) Presented by L. Tauscher Basel.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
 Output of Project X  1 “blast” = 9mA*1ms = 5.6e13 (protons)/(1.4 s cycle)  = 4e13 p/s on average (!!)  = 50 kW average beam power  = 8e20/yr (2e7.
The Past, Present and Future of Muonium Memorial Symposium in Honor of Vernon Willard Hughes Yale University, November 14-15, 2003 Klaus Jungmann Kernfysisch.
Yannis K. Semertzidis Brookhaven National Laboratory HEP Seminar SLAC, 27 April 2004 Muon g-2: Powerful Probe of Physics Beyond the SM. Present Status.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
High p T hadron production and its quantitative constraint to model parameters Takao Sakaguchi Brookhaven National Laboratory For the PHENIX Collaboration.
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration 3 rd Joint NIPNET ION-CATCHER HITRAP Collaboration.
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
Standard Model of Particle Physics
     Possibility of precise
Section VI - Weak Interactions
Presentation transcript:

Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model Precision Experiment Fundamental Constants Related Experiments Interpretation Future Possibilities

QED - Contributions: Weak Interaction Corrections: a  (QED) = (2.9) * (Kinoshita 2000)  a  (weak) = 151(4) * (Kutho 1992, Degrassi 1998) 

QED - Contributions: Weak Interaction Corrections: a  (QED) = (2.9) * (Kinoshita 2000)  a  (weak) = 151(4) * (Kutho 1992, Degrassi 1998) 

minor error in calculations

The new measurement of the muon magnetic anomaly at the Brookhaven National Laboratory aims for 0.35 ppm relative accuracy. Why? We have in the listing of fundamental physical constants: electron magnetic anomaly (41) ( ppm) muon magnetic anomaly (64) x (0.55 ppm) Sensitivity to heavier objects larger by (m  /m e ) 2 

Hadronic Corrections for g  -2  a   hadr.,1 st order) = 6951(75)  (Davier, 1998)  a   hadr., higher order) = -101(6)  (Krause, 1996)  a   hadr., light on light) = -79(15)  (Hayakawa, 1998) !! Situation Spring 2001

Early “Shopping List”

The fixed probes 4 ppm Proton NMR

Electronics inside the trolley The NMR-Trolley 17 probes - Proton NMR in water

Electrostatic Quadrupole Electrodes NMR Trolley Rails Fixed NMR Probes Trolley NMR Probes Vacuum Vessel

positrons with E > 2GeV in 1999

Systematic Uncertainties, Results Magnetic Field  p,0 spherical probe 0.05 ppm  p (R,t i ) 17 trolley probes 0.22 ppm  p (R,t) 150 fixed probes 0.15 ppm  p (R) aging -  p (R I ) inflector fringe field 0.20 ppm <  p  muon distribution 0.12 ppm  total systematic uncertainty  p =0.4 ppm  Spin Precession Pileup 0.13 ppm AGS background 0.10 ppm Lost muons 0.10 ppm Timing Shifts 0.10 ppm E field and vertical CBO 0.08 ppm Binning and Fitting procedure 0.07 ppm Coherent Betatron Oscillations 0.05 ppm beam debunching 0.04 ppm Gain Instability 0.02 ppm total systematic uncertainty  a,sy = 0.25 ppm total statistical uncertainty  a,st = 1.25 ppm  p /2  = (25) Hz  a /2  = (0.3) Hz

QED mm  g-2 hadronic contribution weak contribution New Physics  + e -  HFS, n=1  QED corrections weak contribution  + e -  1S-2S m  QED corrections QED mm  , , g  h

a  = a m ca m c e  B = aa pp aa pp  pp - Experiment: Theory: * need  for muon ! * hadronic and weak corrections * various experimental sources of  better 100ppb>  need constants at very moderate *  no concern for (g-2)  accuracy *  a and B (  p ) measured in (g-2)  experiment * c is a defined quantity * m  (   ) is measured in muonium spectroscopy (hfs) NEW 1999 * e  is measured in muonium spectroscopy (1s -2s) NEW 1999 *  p in water known >> probe shape dependence *  3He to  p in water >> gas has no shape effect being improved

Muonium Hyperfine Structure Solenoid   e    in SS Detector MW-Resonator Yale - Heidelberg - Los Alamos  exp = (53) Hz ( 12 ppb)  theo = (520)(34)(<100) Hz(<120 ppb)    p = (39) (120 ppb) m   m e = (24) (120 ppb)   = (5 2) ( 39 ppb) W. Liu et al. Phys. Rev. Lett. 82, 711 (1999)

Muonium 1S-2S Experiment Laser Diagnostics   Detection -.25 R  1S 2S 244 nm Energy -R  0    e   kin   in  ee Target Mirror Heidelberg - Oxford - Rutherford - Sussex - Siberia - Yale  1s-2s = (9.1)(3.7) MHz  1s-2s = (1.4) MHz m    = (17) m e q     = [ (2.1) ] q e- exp theo V.Meyer et al., Phys.Rev.Lett. 84, 1136 (2000)

2.6  deviation

Possible Explanations for  a  a  (exp) and a  (latest theory) differ by 42(16) * The probability for agreement is < 1% Statistical Fluctuation Undiscovered Error in Experiment (not recognized systematics) Not yet complete standard theory calculation (hadronic contribution) New Physics 4 times more data on tape & data for  - being taken

Courtesy of W. Kluge, Karlsruhe (Summer 2001) About 1 year’s data needed

Hadronic Corrections for g  -2  a   hadr.,1 st order) = 6951(75)  (Davier, 1998)  a   hadr., higher order) = -101(6)  (Krause, 1996)  a   hadr., light on light) = -79(15)  (Hayakawa, 1998) !! ??SIGN ??

Muon Magnetic Anomaly in Super Symmetric Models approximate rule :  a  SUSY  1.4    [ (100 GeV/c 2 ) /m g ] 2  tan  goal BNL 821: a  to 0.4   after: U. Chattopadyay and P. Nath, 1995 A t, m 0 vary over parameter space m 0 < 1TeV/c 2 no constraints from dark matter constraint through dark matter     w    w           k ~   k   k ~

Note: Even if there will be a difference between muon g-2 and theory established and unquestioned, it does not carry a tag about the nature of the difference! We will need further experiments then to learn more! Such as: - searches for rare muon decays - search for a muon edm

 e  appears in composite models if  a  as suggested

Concept works also for (certain) nuclei; GSI could start right now Exploit huge motional electric fields for relativistic particles in high magnetic fields; observe spin rotation EDM closely related to non standard anomaly in many models!

CERN Neutrino Factory baseline scenario (target muon budget) 4 MW 2.2ms/13.3ms 3.3  s (144b of 3ns) p/s  s =  yr  yr e  yr   yr e  yr   yr e  yr   yr (© A. Blondel) Similar Bright Possibilities at almost any High Power Proton Facility, e.g. - ESS - GSI (?) - JHF Don’t Mi(e)ss It! Future Possibilities

SPARES

Neutrino CERN Possibly Interesting experiments High Intensity Low Energy Muon Experiments (targets!) rare decays    e +     e     e + e  e + > Lepton number muonium - antimuonium conversion > Lepton number “normal” muon decay > G F muon magnetic anomaly > g-2, a  muon edm > d  muon parameters > m ,  ,  muonic atoms > r p, g p  CF Next Generation ISOLDE Experiments radioactive muonic atoms > r n, r p nuclear structure of short lived nucleids > r n, r p nuclear structure far off valley of stability > r n, r p muon capture Neutrino Experiments long baseline short baseline charm Production NC/CC > m w (10-20 MeV) and sin 2 q w eff ( ) Kaon Experiments ( >> 15 GeV postaccelerator ) K Jungmann 18-Apr-2001

Muon Experiments Possible at a CERN Neutrino Factory - Expected Improvements K Jungmann 18-Apr-2001

< < < < Muon Experiments possible at a CERN Neutrino Factory - Required Beam Parameters K Jungmann 18-Apr-2001