Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most desirable unexpanded node Implementation:

Slides:



Advertisements
Similar presentations
Informed search algorithms
Advertisements

Informed search algorithms
Informed Search Algorithms
Informed search strategies
Informed search algorithms
An Introduction to Artificial Intelligence
A* Search. 2 Tree search algorithms Basic idea: Exploration of state space by generating successors of already-explored states (a.k.a.~expanding states).
Problem Solving: Informed Search Algorithms Edmondo Trentin, DIISM.
Informed search algorithms
Solving Problem by Searching
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
Artificial Intelligence Spring 2009
EIE426-AICV 1 Blind and Informed Search Methods Filename: eie426-search-methods-0809.ppt.
Search Strategies CPS4801. Uninformed Search Strategies Uninformed search strategies use only the information available in the problem definition Breadth-first.
Problem Solving by Searching
SE Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Review: Search problem formulation
Informed search algorithms
Artificial Intelligence
CS 460 Spring 2011 Lecture 3 Heuristic Search / Local Search.
CSC344: AI for Games Lecture 4: Informed search
CS 561, Session 6 1 Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Rutgers CS440, Fall 2003 Heuristic search Reading: AIMA 2 nd ed., Ch
Informed search algorithms
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Informed search algorithms
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search.
Informed search algorithms
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search.
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics.
CHAPTER 4: INFORMED SEARCH & EXPLORATION Prepared by: Ece UYKUR.
1 Shanghai Jiao Tong University Informed Search and Exploration.
Informed search algorithms Chapter 4. Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most.
ISC 4322/6300 – GAM 4322 Artificial Intelligence Lecture 3 Informed Search and Exploration Instructor: Alireza Tavakkoli September 10, 2009 University.
CS 380: Artificial Intelligence Lecture #4 William Regli.
Informed search strategies Idea: give the algorithm “hints” about the desirability of different states – Use an evaluation function to rank nodes and select.
Informed searching. Informed search Blind search algorithms do not consider any information about the states and the goals Often there is extra knowledge.
Informed Search Strategies Lecture # 8 & 9. Outline 2 Best-first search Greedy best-first search A * search Heuristics.
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms Hill-climbing search.
Chapter 4 Informed/Heuristic Search
Review: Tree search Initialize the frontier using the starting state While the frontier is not empty – Choose a frontier node to expand according to search.
Princess Nora University Artificial Intelligence Chapter (4) Informed search algorithms 1.
CSC3203: AI for Games Informed search (1) Patrick Olivier
Informed Search I (Beginning of AIMA Chapter 4.1)
CS 312: Algorithm Design & Analysis Lecture #37: A* (cont.); Admissible Heuristics Credit: adapted from slides by Stuart Russell of UC Berkeley. This work.
Informed Search and Heuristics Chapter 3.5~7. Outline Best-first search Greedy best-first search A * search Heuristics.
4/11/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 4, 4/11/2005 University of Washington, Department of Electrical Engineering Spring 2005.
A General Introduction to Artificial Intelligence.
Feng Zhiyong Tianjin University Fall  Best-first search  Greedy best-first search  A * search  Heuristics  Local search algorithms  Hill-climbing.
Pengantar Kecerdasan Buatan 4 - Informed Search and Exploration AIMA Ch. 3.5 – 3.6.
Informed Search II CIS 391 Fall CIS Intro to AI 2 Outline PART I  Informed = use problem-specific knowledge  Best-first search and its variants.
Informed Search CSE 473 University of Washington.
Searching for Solutions
Chapter 3.5 and 3.6 Heuristic Search Continued. Review:Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
1/27 Informed search algorithms Chapter 4 Modified by Vali Derhami.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 5 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Reading Material Sections 3.3 – 3.5 Sections 4.1 – 4.2 “Optimal Rectangle Packing: New Results” By R. Korf (optional) “Optimal Rectangle Packing: A Meta-CSP.
Chapter 3.5 Heuristic Search. Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
Last time: Problem-Solving
Heuristic Search Introduction to Artificial Intelligence
Discussion on Greedy Search and A*
Discussion on Greedy Search and A*
CS 4100 Artificial Intelligence
Artificial Intelligence Informed Search Algorithms
Informed search algorithms
Informed search algorithms
Artificial Intelligence
Artificial Intelligence
Solving Problems by Searching
Informed Search.
Presentation transcript:

Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most desirable unexpanded node Implementation: Order the nodes in fringe in decreasing order of desirability or order does not matter pick the desirable one Special cases: –greedy best-first search –A * search

Romania with step costs in km

Greedy best-first search Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal e.g., h SLD (n) = straight-line distance from n to Bucharest Greedy best-first search expands the node that appears to be closest to goal

Greedy best-first search example

Properties of greedy best-first search Complete? No – can get stuck in loops, e.g., Iasi  Neamt  Iasi  Neamt  Time? O(b m ), but a good heuristic can give dramatic improvement Space? O(b m ) -- keeps all nodes in memory Optimal? No

A * search Idea: avoid expanding paths that are already expensive Evaluation function f(n) = g(n) + h(n) g(n) = cost so far to reach n h(n) = estimated cost from n to goal f(n) = estimated total cost of path through n to goal

A * search example

Admissible heuristics A heuristic h(n) is admissible if for every node n, h(n) ≤ h * (n), where h * (n) is the true cost to reach the goal state from n. An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic Example: h SLD (n) (never overestimates the actual road distance) Theorem: If h(n) is admissible, A * using TREE- SEARCH is optimal

Optimality of A * (proof) Suppose some suboptimal goal G 2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G. f(G 2 ) = g(G 2 )since h(G 2 ) = 0 g(G 2 ) > g(G) since G 2 is suboptimal f(G) = g(G)since h(G) = 0 f(G 2 ) > f(G)from above

Optimality of A * (proof) Suppose some suboptimal goal G 2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G. f(G 2 )> f(G) from above h(n)≤ h^*(n)since h is admissible g(n) + h(n)≤ g(n) + h * (n) f(n) ≤ f(G) Hence f(G 2 ) > f(n), and A * will never select G 2 for expansion

Consistent heuristics A heuristic is consistent if for every node n, every successor n' of n generated by any action a, h(n) ≤ c(n,a,n') + h(n') If h is consistent, we have f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') ≥ g(n) + h(n) = f(n) i.e., f(n) is non-decreasing along any path. Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A * A * expands nodes in order of increasing f value Gradually adds "f-contours" of nodes Contour i has all nodes with f=f i, where f i < f i+1

Properties of A$^*$ Complete? Yes Time? Exponential Space? Keeps all nodes in memory Optimal? Yes

Admissible heuristics E.g., for the 8-puzzle: h 1 (n) = number of misplaced tiles h 2 (n) = total Manhattan distance (i.e., no. of squares from desired location of each tile) h 1 (S) = ? h 2 (S) = ?

Admissible heuristics E.g., for the 8-puzzle: h 1 (n) = number of misplaced tiles h 2 (n) = total Manhattan distance (i.e., no. of squares from desired location of each tile) h 1 (S) = ? 8 h 2 (S) = ? = 18

Dominance If h 2 (n) ≥ h 1 (n) for all n (both admissible) then h 2 dominates h 1 h 2 is better for search Typical search costs (average number of nodes expanded): d=12IDS = 3,644,035 nodes A * (h 1 ) = 227 nodes A * (h 2 ) = 73 nodes d=24 IDS = too many nodes A * (h 1 ) = 39,135 nodes A * (h 2 ) = 1,641 nodes

Relaxed problems A problem with fewer restrictions on the actions is called a relaxed problem The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h 1 (n) gives the shortest solution If the rules are relaxed so that a tile can move to any adjacent square, then h 2 (n) gives the shortest solution

Local search algorithms In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution State space = set of "complete" configurations Find configuration satisfying constraints, e.g., n- queens In such cases, we can use local search algorithms keep a single "current" state, try to improve it

Example: n-queens Put n queens on an n × n board with no two queens on the same row, column, or diagonal

Hill-climbing search "Like climbing Everest in thick fog with amnesia"

Hill-climbing search Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem h = number of pairs of queens that are attacking each other, either directly or indirectly h = 17 for the above state

Hill-climbing search: 8-queens problem A local minimum with h = 1