April 3, 2005 The lens redshift distribution – Constraints on galaxy mass evolution Eran Ofek, Hans-Walter Rix, Dan Maoz (2003)

Slides:



Advertisements
Similar presentations
Dark energy workshop Copenhagen Aug Why the SNLS ? Questions to be addressed: -Can the intrinsic scatter in the Hubble diagram be further reduced?
Advertisements

MOND Modified Newtonian Dynamics A Humble Introduction Johannes Kepler Isaac Newton Markus Nielbock.
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
H.-W. Rix, Vatican 2003 Gravitational Lensing as a Tool in Cosmology A Brief History of Lensing 1704 Newton (in Optics): „Do not bodies act upon light.
Lensing of supernovae by galaxies and galaxy clusters Edvard Mörtsell, Stockholm Jakob Jönsson, Oxford Ariel Goobar; Teresa Riehm, Stockholm.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 9; February
July 7, 2008SLAC Annual Program ReviewPage 1 Weak Lensing of The Faint Source Correlation Function Eric Morganson KIPAC.
Dark Matter in Galaxies using Einstein Rings Brendon J. Brewer School of Physics, The University of Sydney Supervisor: A/Prof Geraint F. Lewis.
Weak-Lensing selected, X-ray confirmed Clusters and the AGN closest to them Dara Norman NOAO/CTIO 2006 November 6-8 Boston Collaborators: Deep Lens Survey.
Strong Lensing in RCS-2 Clusters Matt Bayliss University of Chicago Department of Astronomy & Astrophysics Great Lakes Cosmology Workshop 8 – June 2, 2007.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 12; February
Physics 133: Extragalactic Astronomy and Cosmology Lecture 13; February
Deriving and fitting LogN-LogS distributions Andreas Zezas Harvard-Smithsonian Center for Astrophysics.
On the Distribution of Dark Matter in Clusters of Galaxies David J Sand Chandra Fellows Symposium 2005.
Relating Mass and Light in the COSMOS Field J.E. Taylor, R.J. Massey ( California Institute of Technology), J. Rhodes ( Jet Propulsion Laboratory) & the.
Probing Small-Scale Structure in Galaxies with Strong Gravitational Lensing Arthur Congdon Rutgers University.
Luminosity & color of galaxies in clusters sarah m. hansen university of chicago with erin s. sheldon (nyu) risa h. wechsler (stanford)
Statistics of the Weak-lensing Convergence Field Sheng Wang Brookhaven National Laboratory Columbia University Collaborators: Zoltán Haiman, Morgan May,
MODELING INTRACLUSTER MEDIUM AND DARK MATTER IN GALAXY CLUSTERS Elena Rasia Dipartimento di Astronomia Università di Padova Padova, April 9th, 2002.
Galaxy-Galaxy Lensing What did we learn? What can we learn? Henk Hoekstra.
Survey Science Group Workshop 박명구, 한두환 ( 경북대 )
1 Gravitational lensing and neutrinos Why not look where natural lenses exist? Proposal of an additional candidate list in point source search: 1. Motivation.
Application of Gravitational Lensing Models to the Brightest Strongly Lensed Lyman Break Galaxy – the 8 o’clock arc E. Buckley-Geer 1, S. Allam 1,2, H.
Environmental Properties of a Sample of Starburst Galaxies Selected from the 2dFGRS Matt Owers (UNSW) Warrick Couch (UNSW) Chris Blake (UBC) Michael Pracy.
The future of strong gravitational lensing by galaxy clusters.
Cosmological Parameters with Gravitational Lens systems from the SDSS Du-Hwan Han & Myeong-Gu Park Kyungpook National University Department of Astronomy.
Complementarity of weak lensing with other probes Lindsay King, Institute of Astronomy, Cambridge University UK.
The Black-Hole – Halo Mass Relation and High Redshift Quasars Stuart Wyithe Avi Loeb (The University of Melbourne) (Harvard University) Fan et al. (2001)
Observational Constraints on Galaxy Clusters and DM Dynamics Doron Lemze Tel-Aviv University / Johns Hopkins University Collaborators : Tom Broadhurst,
Constraining Dark Energy with Cluster Strong Lensing Priyamvada Natarajan Yale University Collaborators: Eric Jullo (JPL), Jean-Paul Kneib (OAMP), Anson.
Center for Cosmology and Astro-Particle Physics Great Lakes Cosmology Workshop VIII, June, 1-3, 2007 Probing Dark Energy with Cluster-Galaxy Weak Lensing.
PREDRAG JOVANOVIĆ AND LUKA Č. POPOVIĆ ASTRONOMICAL OBSERVATORY BELGRADE, SERBIA Gravitational Lensing Statistics and Cosmology.
The clustering of galaxies detected by neutral hydrogen emission Sean Passmoor Prof. Catherine Cress Image courtesy of NRAO/AUI and Fabian Walter, Max.
Galaxy clustering II 2-point correlation function 5 Feb 2013.
Full strength of (weak) Cluster lensing Advisors: Tom Broadhurst, Yoel Rephaeli Collaborators: Keiichi Umetsu, Narciso Benitez, Dan Coe, Holland Ford,
Local SMBH and Galaxy Correlations M bul / M BH  800 M BH -σ* relation (Gebhardt et al. 2000, Ferrarese & Merritt 2000) (e.g. Kormendy & Richstone 1995,
The masses and shapes of dark matter halos from galaxy- galaxy lensing in the CFHTLS Henk Hoekstra Mike Hudson Ludo van Waerbeke Yannick Mellier Laura.
Gravitational Lensing Analysis of CLASH clusters Adi HD 10/2011.
Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille.
Cosmic Inhomogeneities and Accelerating Expansion Ho Le Tuan Anh National University of Singapore PAQFT Nov 2008.
10/5/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1: Gravitation & relativity J.A. Peacock, Cosmological Physics,
23 Sep The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun Peking Univ./ CPPM.
Observational Test of Halo Model: an empirical approach Mehri Torki Bob Nichol.
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun.
Dynamic and Spatial Properties of Satellites in Isolated Galactic Systems Abel B. Diaz.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
Xiaohu Yang (SJTU/SHAO) With: H. Wang, H.J. Mo, Y.P. Jing, F.C van den Bosch, W.P. Lin, D. Tweed… , KIAS Exploring the Local Universe with re-
MMT (and Magellan) Spectroscopic Survey of the Environments of Strong Gravitational Lenses Ivelina Momcheva In collaboration with: Ann Zabludoff Kurtis.
Selecting a mass function by way of the Bayesian Razor Darell Moodley (UKZN), Dr. Kavilan Moodley (UKZN), Dr. Carolyn Sealfon (WCU)
PHY306 1 Modern cosmology 2: More about Λ Distances at z ~1 Type Ia supernovae SNe Ia and cosmology Results from the Supernova Cosmology Project, the High.
Strong Lensing Surveys and Statistics Dan Maoz. zqzq Survey strategies: Search among source population for lensed cases or Search behind potential lenses.
Gravitational lensing: surveys and studies with new instruments.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
Investigating dark matter halos of galaxies from the COMBO-17 survey Martina Kleinheinrich (Max-Planck-Institut für Astronomie, Heidelberg) & Hans-Walter.
Distance Indicators and Peculiar Velocities Status of the 6dFGS V-survey Lachlan Campbell, RSAA/AAO 6dFGS Workshop April 2005.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
Guoliang Li Shanghai Astronomic Observatory November 1st, 2006 November 1st, 2006 The giant arc statistic in the three-year WMAP cosmological model COLLABORATORS:
Constraining Dark Energy with Double Source Plane Strong Lenses Thomas Collett With: Matt Auger, Vasily Belokurov, Phil Marshall and Alex Hall ArXiv:
Bayesian analysis of joint strong gravitational lensing and dynamic galactic mass in SLACS: evidence of line-of-sight contamination Antonio C. C. Guimarães.
Thomas Collett Institute of Astronomy, Cambridge
Thomas Collett Institute of Astronomy, Cambridge
Thomas Collett Institute of Astronomy, Cambridge
Cosmological Constraints from the Double-
Glenn van de Ven Institute for Advanced Study
Advisors: Tom Broadhurst, Yoel Rephaeli
Cosmology with Supernovae
Dept of Physics and Astronomy University of Glasgow, UK
Simulations of Gravitational Lensing on High z Supernovae
Intrinsic Alignment of Galaxies and Weak Lensing Cluster Surveys Zuhui Fan Dept. of Astronomy, Peking University.
Presentation transcript:

April 3, 2005 The lens redshift distribution – Constraints on galaxy mass evolution Eran Ofek, Hans-Walter Rix, Dan Maoz (2003)

April 3, 2005 Talk layout Basics of gravitational lensing The lens redshift distribution test Sample selection Constraints on galaxy mass evolution The maximum likelihood and bias

April 3, 2005 Gravitational Lensing DsDs D ls DlDl

April 3, 2005 Gravitational Lensing

April 3, 2005 Gravitational Lensing

April 3, 2005 Lens Redshift Distribution Based on observations: θ depends on lens mass (= velocity dispersion  ) + f/p Number density  velocity dispersion (=mass) ** n*n* Evolution? n * = n * (redshift)  * =  * (redshift) Probability for Lensing P(z l | z s,  ) ~ Number density of Lenses x Given Lens: probability of θ x Cosmology How much “distance” in redshift interval

April 3, 2005 Lens Redshift Distribution - Example

April 3, 2005 Selecting a sample Doesn’t depend on angular selection completeness Image separation is prior Kochanek (1996): truncated the redshift probability distribution beyond the redshift at which the lens galaxy become too faint to have its redshift measured Missing redshift information? pr

April 3, 2005 The Sample Source redshift cut Sample I N=14 Sample II N=11 More than 80 gravitational lenses known Ignoring lenses without redshift information Bias We need lenses with complete redshift information

April 3, 2005 Probability vs. Lenses JK

April 3, 2005 Galaxy Mass Evolution L definitions cos U/P/T

April 3, 2005 Galaxy Mass Evolution Not probable rejected

April 3, 2005 Cosmology No evolution Flat Universe

April 3, 2005 Jackknife - bias and outliners Bias: Given a sample S 1,....,S n : calculate statistic T Drop point number k (=S k ). Calculate T(S 1,...,S k-1,S k+1,...,S n ) = T i≠k Quenouille-Tukey jackknife bias:

April 3, 2005 Jackknife - bias and outliners Bias:

April 3, 2005 Summary Assuming “standard cosmology” Sensitive to galaxy mass evolution Assuming no evolution

April 3, 2005 End

April 3, 2005 Lens Redshift Distribution Number density of lenses = galaxy mass function Proper distance interval Lensing cross section + f/p Schechter function Faber-Jackson relation

April 3, 2005 Sensitivity definitions FJ

April 3, 2005 Future Work Obtain additional lens redshift Maoz, Rix, & Kochanek VLT) Use velocity dispersion function e.g., Sheth et al. (2003) Larger sample Higher redshift (z~1.5)

April 3, 2005 Spherical Isothermal Sphere SIS assumption is consistent with data: - Galaxy dynamics (Rix et al. 1997) - X-ray emission from ellipticals (Fabbiano et al. 1989) - Lensing (Treu & Koopmans 2002) SIS lenses Einstein radius = image separation For SIS the Einstein radius:

April 3, 2005 Previous Work Kochanek 1992 Helbig & Kayser 1996 Kochanek 1996 Weak constraints on cosmology N=4 N=6 N=8 Sample size

April 3, 2005 Lens Redshift Distribution SpiralS0Elliptical Parameters : 2dF - Madgwick et al. (2002)

April 3, 2005 Problems Lenses discovered based on lens-properties Missing redshifts Galaxy evolution Clusters Mass profile of galaxies Q Photometric Redshift - FBQ Martel et al. (2002) Keeton et al. (2000) Effect on separation Kochanek (1996) - small effect

April 3, 2005 Galaxy Evolution Van Dokkum et al. (1998)0.83 Keeton, Kochanek & Falco (1998)~1 Lin et al. (1999)0.55 van Dokkum et al. (2001)0.55 Cohen (2002)~1 Rusin et al. (2002)~1 Im et al. (2002)~1

April 3, 2005 Scatter of the Faber-Jackson unperturbed 20% ln-normal scatter 40% ln-normal scatter

April 3, 2005 Sensitivity - Cosmology Flat Universe

April 3, 2005

Gravitational Lensing DsDs D ls DlDl

April 3, 2005 Gravitational Lensing

April 3, 2005 Gravitational Lensing DsDs D ls DlDl