BX663 (2.4) MD 41 (2.2) K20-9 (2.0) K20-7 (2.2) K20-8 (2.2) D3a 4751 (2.27) SA (2.3) SA (2.2) GK2471 (2.43) ZC (1.41) K20-5 (2.2) BzK 4165 (1.7) BX 502 (2.16) BX 405 (2.03) BM 1163 (1.41) BX 404 (2.03) SA (1.51) merger-like rotation- dominated K20-6 (2.2) BX 599 (2.33) GK 2113 (1.61) GK 167 (2.58) GK2252 (2.41) BzK 6004 (2.4) BzK (2.4) BX528 (2.3) ZC (2.2) D3a 6397 (1.51) BX389 (2.2) 1” (8 kpc) BX 610 (2.2) BX482 (2.2) increasing dispersion Förster, Bouché,Cresci, Genzel, Shapiro et al SINS 70 Galaxies Disk: 30-40% (v/σ ~ 2 – 4) Disp: 30% (v/σ < 1) Merger: 20-30% Forster Schreiber et al. 09 Shapiro et al. 09
SINS “rotators” Cresci et al. 09
SINS “rotators” Cresci et al. 09
SINS “rotators” Cresci et al. 09
Étude des galaxies à faible masse MUSE Workshop March 18/19 N. Bouché (MPE LATT)
The Hubble sequence still unexplained Need to study progenitors!
Why study low-mass galaxies? Ocvirk, Teyssier 08 VVDS SINS LBG
Where are the baryons? S. White & co (SDSS) M halo
New insights in galaxy formation Scaling relations (SFR-Mass, TF, etc..) see H. Flores, M. Puech, L. Tresse Z=2 GOODS sBzK K<22.5 Daddi + Elbaz 07 Z=0 SDSS Puech 08, Cresci 09 Mergers not dominant
Questions Why SFR ~ 200 M/yr at z=2? Origin of scaling relations: TF, SFR-Mass? Role of feedback in low-mass end (z=2)? What happens at z>5 ?
the millenium cosmological simulation high-sigma halos: fed by relatively thin, dense filaments → cold flows typical halos: reside in relatively thick filaments, fed ~spherically → no cold flows
Genel et al. 08 DM accretion rate M halo Insights from Millennium Simulation EPS dM/dt ~ 35 M h 1.0 (1+z) 2.2 SFR =ε 0.18 dM h /dt SINS ε must be ~1
Dark + baryon accretion Prediction: >>50% baryons accreted as cold gas! (but clumpy)
New insights in galaxy formation Scaling relations (SFR-Mass, TF, etc..) see H. Flores, M. Puech, L. Tresse Z=2 GOODS sBzK K<22.5 Daddi + Elbaz 07 Z=0 SDSS EPS
f_baryon at z=0 Observation at z=0 Toy model prediction Strongly tied to only assumption
Gas : : 10% 30-50%Tacconi/Daddi 30%Tacconi 10% Ω(HI)/Ω(star) Accretion prediction Observations
Questions Why SFR ~ 200 M/yr at z=2? Origin of scaling relations: TF, SFR-Mass? Role of feedback in low-mass end (z=2)? What happens at z>5 ?
Galaxy formation with MUSE Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies A.Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) B.High redshift Lyman alpha emitters C.Cold accretion
Galaxy formation with MUSE Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies A.Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) B.High redshift Lyman alpha emitters C.Cold accretion
Galaxy formation with MUSE Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies A.Feedback processes (IGM, MZ relation) (z~0.7 – 1.0) B.High redshift Lyman alpha emitters C.Cold accretion (z~3) 1’
How? Study low-mass galaxies at z~1 [OII] Study filaments at z~3 [Lya] LAE at z~4,5 LAE at z>6 Verhamme Need KMOS (OII) Measure ε_SFR (M halo) Need KMOS / Hawk-I etc SF UDF MDF
Cold Accretion