Algebraic Proof Addition:If a = b, then a + c = b + c. Subtraction:If a = b, then a - c = b - c. Multiplication: If a = b, then ca = cb. Division: If a.

Slides:



Advertisements
Similar presentations
2.5 Reasoning in Algebra and Geometry
Advertisements

1 2-4 Reasoning in Algebra Objectives: Use basic properties of algebra in reasoning Define congruence State the properties of congruence.
Bellringer.
2.6 Prove Statements About Segments and Angles
Warm Up Solve each equation t – 7 = 8t (y – 5) – 20 = 0 x = 7 r = 12.2 or n = 17 y = 15.
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
Chapter 2 Properties from Algebra
2.5 Reasoning in Algebra and Geometry
Lesson 2-6 Algebraic Proofs. Ohio Content Standards:
2-6 Algebraic Proof p. 136 You used postulates about points, lines, and planes to write paragraph proofs. Use algebra to write two-column proofs. Use properties.
Lesson 2-6 Algebraic Proof. 5-Minute Check on Lesson 2-5 Transparency 2-6 In the figure shown, A, C, and DH lie in plane R, and B is on AC. State the.
PROVE STATEMENTS ABOUT SEGMENTS & ANGLES. EXAMPLE 1 Write a two-column proof Write a two-column proof for the situation in Example 4 on page 107. GIVEN:
Algebraic proof Chapter 2 Section 6.
Honors Geometry Intro. to Deductive Reasoning. Reasoning based on observing patterns, as we did in the first section of Unit I, is called inductive reasoning.
Algebraic Proofs. Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = t – 7 = 8t (y – 5) – 20 = 0 x = 4 r = 12.2 n = –38 y = 15.
2-5 Algebraic proofs. SAT Problem of the day The volume and surface area of a cube are equal. What is the length of an edge of this cube? A) 1 B) 2 C)4.
Over Lesson 2–5 5-Minute Check 1 In the figure shown, A, C, and lie in plane R, and B is on. Which option states the postulate that can be used to show.
Postulates and Algebraic Proofs Advanced Geometry Deductive Reasoning Lesson 2.
Vocabulary algebraic proof – Made up of algebraic statements two-column proof/formal proof – contains statements and reasons in two columns.
Chapter 2 Section 5. Objective  Students will make a connection between reasoning in Algebra and reasoning in Geometry.
Chapter 2 Section 4 Reasoning in Algebra. Properties of Equality Addition Property of Equality If, then. Example: ADD 5 to both sides! Subtraction Property.
Holt Geometry 2-5 Algebraic Proof 2-5 Algebraic Proof Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Lesson 2 – 6 Algebraic Proof
UNIT 01 – LESSON 11 – ALGEBRAIC PROOFS ESSENTIAL QUESTION How can algebraic properties help you solve an equation? SCHOLARS WILL… Use algebra to write.
2.3 Diagrams and 2.4 Algebraic Reasoning. You will hand this in P. 88, 23.
Lesson: 15 – 4 Preparing for Two-Column Proofs
Warm Up. Warm Up Answers Theorem and Proof A theorem is a statement or conjecture that has been shown to be true. A theorem is a statement or conjecture.
BIG IDEA: Reasoning and Proof ESSENTIAL UNDERSTANDINGS: Logical reasoning from one step to another is essential in building a proof. Logical reasoning.
2-5 Reasoning with Properties from Algebraic Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
They are easier than Geometry ones!!. PROOFS The “GIVEN” is always written first –It is a “GIMME” The “PROVE” should be your last line Make a two column.
Objective: To prove and apply theorems about angles Proving Angles Congruent (2-6)
Reasoning with Properties from Algebra Algebraic Properties of Equality let a, b, and c be real numbers. Addition Property: If a=b, then a+c=b+c. Subtraction.
2.5 Reason Using Properties from Algebra Objective: To use algebraic properties in logical arguments.
2.6 Algebraic Proof. Objectives Use algebra to write two-column proofs Use algebra to write two-column proofs Use properties of equality in geometry proofs.
2.5 Reasoning in Algebra and Geometry Algebraic properties of equality are used in Geometry. –Will help you solve problems and justify each step. In Geometry,
Holt Geometry 2-5 Algebraic Proof 2-5 Algebraic Proof Holt Geometry.
Intro to Proofs Unit IC Day 2. Do now Solve for x 5x – 18 = 3x + 2.
2.5 Reasoning and Algebra. Addition Property If A = B then A + C = B + C.
USING PROPERTIES FROM ALGEBRA ALGEBRAIC PROPERTIES OF EQUALITY Let a, b, and c be real numbers. SUBTRACTION PROPERTY ADDITION PROPERTY If a = b, then a.
Geometry: Section 2.4 Algebraic Reasoning. What you will learn: 1. Use Algebraic Properties of Equality to justify the steps in solving an equation. 2.
Section 2.2 Day 1. A) Algebraic Properties of Equality Let a, b, and c be real numbers: 1) Addition Property – If a = b, then a + c = b + c Use them 2)
2-6 Prove Statements About Segments and Angles Hubarth Geometry.
Holt McDougal Geometry 2-5 Algebraic Proof Review properties of equality and use them to write algebraic proofs. Identify properties of equality and congruence.
Chapter 2 Reasoning and Proof
Reasoning in Algebra and Geometry
2.5 and 2.6 Properties of Equality and Congruence
Objectives Students will…
2.5 Reasoning with properties from Algebra
2.5 – Reasoning Using Properties of Algebra
2.4 Algebraic Reasoning.
Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
1. SWBAT use algebra to write two column proofs
2.5 Reasoning in Algebra and Geometry
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Chapter 2.5 Reasoning in Algebra and Geometry
Warm Up Determine whether each statement is true or false. If false, give a counterexample. 1. It two angles are complementary, then they are not congruent.
2-5 Algebraic Proof Are You? Ready Lesson Presentation Lesson Quiz
Standard: MCC9-12.A.REI.1 – Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step,
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Objective SWBAT use the properties of equality to write algebraic proofs. HW Page 107 {3-15 odd, 23, 25, 31}
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Presentation transcript:

Algebraic Proof Addition:If a = b, then a + c = b + c. Subtraction:If a = b, then a - c = b - c. Multiplication: If a = b, then ca = cb. Division: If a = b, and c ≠ 0, then a  c = b  c

Algebraic Proof Substitution: If a + b = c and b = d, then a + d = c. Reflexive: a = a. Symmetric: If a = b, then b = a. Transitive: If a = b and b = c, then a = c. Distributive: a(b + c) = ab + ac.

Algebraic Proof Deductive Argument – A proof formed by a group of algebraic steps used to solve problems. Since geometry also uses variables, numbers, and operations, many of the properties of equality used in algebra are also true in geometry. (Examples: segment measures, angle measures)

Algebraic Proof Two-column proof (formal proof) – A form of deductive argument with statements and reasons organized in two-columns. Each step that advances the argument is called a statement. Each property, definition, rule, etc used to justify the statements are called reasons.

Example 6-1c Original equation Algebraic StepsProperties Distributive Property Substitution Property Subtraction Property Solve

Example 6-1d Substitution Property Division Property Substitution Property Answer:

Example 6-2f Write a two-column proof for the following. a.

Example 6-2g 1. Given 2. Multiplication Property 3. Substitution 4. Subtraction Property 5. Substitution 6. Division Property 7. Substitution Proof: Statements Reasons

Example 6-3d If and then which of the following is a valid conclusion? I. II. III. MULTIPLE- CHOICE TEST ITEM A I only B I and II C I and III D II and III Answer: C

Example 6-4b DRIVING A stop sign as shown below is a regular octagon. If the measure of angle A is 135 and angle A is congruent to angle G, prove that the measure of angle G is 135.

Example 6-4c Proof: StatementsReasons 1. Given 2. Given 3. Definition of congruent angles 4. Transitive Property