First results from the MEG/RE12 experiment at PSI A.M. Baldini 29 sep 2009 Hep-ex:0908.2594v1 18 Aug 2009.

Slides:



Advertisements
Similar presentations
MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Advertisements

INFN of Genova, Pavia and Roma Flavio Gatti, PSI, February 9 th, Timing Counter status Timing Counter status.
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
Genova/Pavia/Roma Flavio Gatti, PSI, July 1st, Timing Counter july 2004.
MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
A. Baldini PSI 18 July 2007 MEG Overview Cobra (W. Ootani) LXe calorimeter (S. Mihara) Calibrations (G. Signorelli) Drift Chambers (J. Egger) Timing counter.
Malte HildebrandtMEG Review Meeting, 14th February 2007 Report of Run Coordinator Run 2006 Summary Malte Hildebrandt MEG Review Meeting, 14th February.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
Peter-Raymond Kettle MEG Review February MEG Commissioning & Engineering Run 2007.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
Status of the NO ν A Near Detector Prototype Timothy Kutnink Iowa State University For the NOvA Collaboration.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Daisuke Kaneko, on behalf of the MEG(II) collaboration 26 Aug, Moscow Today and Tomorrow of the MEG experiment.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
M. Grassi – INFN Pisa La Thuile - March 15 th, A sensitive search fordecay: the MEG experiment Marco Grassi INFN, Pisa on behalf of the MEG Collaboration.
1 fact03 NY June 6 th 2003 Particle physics with intense muon beams A.M. Baldini - INFN Pisa.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
Flavio Gatti,Frascati-PSI, Jan 31 th, 06 1 TC status. Flavio Gatti UNIVERSITY and INFN of Genoa, Italy.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
Calibration and monitoring of the experiment using the Cockcroft-Walton accelerator G. Signorelli Sezione di Pisa MEG Review meeting - 20 Feb On.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
1 Electronics Status Trigger and DAQ run successfully in RUN2006 for the first time Trigger communication to DRS boards via trigger bus Trigger firmware.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
After Protons from RCS 1 st DeeMe Collaboration Meeting Dec. 10, 2012 Kazami Yamamoto J-PARC Center Accelerator Division.
GSI 9Feb09 NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract:
g beam test of the Liquid Xe calorimeter for the MEG experiment
MEG Experiment Data Analysis: a status report
Search for lepton flavor violation: Latest results from the MEG experiment Gordon Lim.
The Electromagnetic calorimeter of the MEG Experiment
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
大強度
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
A personal overview of particle physics activities at PSI
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
(particle) physics with a new high intensity low energy muon source
Stefan Ritt Paul Scherrer Institute, Switzerland
GEANT Simulations and Track Reconstruction
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
Trigger operation during 2007 run
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

First results from the MEG/RE12 experiment at PSI A.M. Baldini 29 sep 2009 Hep-ex: v1 18 Aug 2009

2 Most recent  +  e +  Experiments Lab.YearUpper limitExperiment or Auth. PSI1977 < 1.0  A. Van der Schaaf et al. TRIUMF1977 < 3.6  P. Depommier et al. LANL1979 < 1.7  W.W. Kinnison et al. LANL1986 < 4.9  Crystal Box LANL1999 < 1.2  MEGA PSI~2011~ MEG Two orders of magnitude improvement tough experimental challenge! But several SUSY GUT and SUSY see-saw models predict BRs at the reach of MEG

3 SUSY-GUT (SUGRA) First contribution: V CKM  cLFV SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R. Barbieri et al., Phys. Lett. B338(1994) 212 R. Barbieri et al., Nucl. Phys. B445(1995) 215 LFV induced by slepton mixing Our goal Experimental limit combined LEP results favour tan  >10

4 SO10

5 Our goal Experimental limit V PMNS ( oscillations    cLFV J. Hisano, N. Nomura, Phys. Rev. D59 (1999) Independent contribution to slepton mixing from masses (see-saw model): V less known tan(  )=30 tan(  )=1 After SNO After Kamland in the Standard Model !! If it is seen it is not SM!

6 Signal and background e+ +  e+ +   e  = 180° Ee = E  = 52.8 MeV Te = T  signal   e  background physical   e  e+ +  e+ +  accidental   e    e  ee   eZ  eZ  e+ + e+ + 

7 The sensitivity is limited by the accidental background Integral on the detector resolutions of the Michel and radiative decay spectra Effective BRback (n back /R  ) The n. of acc. backg events (n acc.b. ) depends quadratically on the muon rateand on how well we measure the experimental quantities: e-  relative timing and angle, positron and photon energy

8 Required Performances Exp./LabYear  E e /E e (%)  E  /E  (%)  t e  (ns)  e  (mrad) Stop rate (s -1 ) Duty cyc.(%) BR (90% CL) SIN x x TRIUMF x x LANL x x Crystal Box x 10 5 (6..9)4.9 x MEGA x 10 8 (6..7)1.2 x MEG x x FWHM BRacc.b.  and BRphys.b.  0.1 BRacc.b. with the following resolutions Need of a DC muon beam BR (  e  )  reachable

9 Experimental method Detector outline 1.Stopped beam of  /sec in a 150  m target 2.Solenoid spectrometer & drift chambers for e + momentum 3.Scintillation counters for e + timing 4.Liquid Xenon calorimeter for  detection (scintillation) Method proposed in 1998: PSI-RR-99-05: possibility MEG proposal: september 2002: goal: A. Baldini and T. Mori spokespersons: Italy, Japan, Switzerland, Russia

10 Detector Construction Switzerland Drift Chambers Beam Line DAQ Japan LXe Calorimeter, Spectrometer’s magnet Russia LXe Tests Beam line Italy e+ counter Trigger LXe Calorimeter USA(UCI) Calibrations/Target/DC pressure system

11 Next slides... 1.The PSI  E5 beamline 2.The Positron spectrometer 3.The Liquid Xenon calorimeter 4.DAQ 5.The 2008 run 6.Future

12 1) The PSI  E5 DC beam Primary proton beam 1.8 mA of 590 MeV/c protons (most intense DC beam in the world) 29 MeV/c muons from decay of  stop at rest: fully polarized ++ Particles intensity as a function of the selected momentum

13 Beam studies Optimization of the beam elements: Wien filter for  /e separation Degrader to reduce the momentum stopping in a 150  m CH 2 target Solenoid to couple beam with COBRA spectrometer Results (4 cm target): Z-version R  (total) 1.3*10 8  + /s R  (after W.filter & Coll.)1.1*10 8  + /s R  (stop in target) 6*10 7  + /s Beam spot (target)   10 mm  /e separation (at collimator) 7.5  (12 cm) 10 8  /s could be stopped in the target but only 3x10 7 are used because of accidental background

14 2) The positron spectrometer: COBRA spectrometer Gradient field Uniform field COnstant Bending RAdius (COBRA) spectrometer Constant bending radius independent of emission angles High p T positrons quickly swept out Gradient field Uniform field

15 The magnet B c = 1.26T current = 359A Five coils with three different diameters Compensation coils to suppress the stray field around the LXe detector High-strength aluminum stabilized superconductor  thin magnet (1.46 cm Aluminum, 0.2 X 0 )

16 Gradient field

17 The drift chambers 16 chamber sectors aligned radially with 10°intervals Two staggered arrays of drift cells Chamber gas: He-C 2 H 6 mixture Vernier pattern to measure z-position made of 15  m kapton foils  (X,Y) ~200  m (drift time)  (Z) ~ 300  m (charge division vernier strips) goals

X 0 along positrons trajectory

19 The Timing Counter One (outer) layer of scintillator read by PMTs : timing One inner layer of scintillating fibers read by APDs: trigger (the long. Position is needed for a fast estimate of the positron direction) Goal  time ~ 40 psec (100 ps FWHM) BC404 5 x 5 mm 2

20 TC Final Design A PLASTIC SUPPORT STRUCTURE ARRANGES THE SCINTILLATOR BARS AS REQUESTED THE BARS ARE GLUED ONTO THE SUPPORT INTERFACE ELEMENTS ARE GLUED ONTO THE BARS AND SUPPORT THE FIBRES FIBRES ARE GLUED AS WELL TEMPORARY ALUMINIUM BEAMS ARE USED TO HANDLE THE DETECTOR DURING INSTALLATION PTFE SLIDERS WILL ENSURE A SMOOTH MOTION ALONG THE RAILS PM-Scintillator Coupler Scintillator Housing Scintillator Slab Main Support Divider Board PM APD APD F.E. Board Fibers APD Cooled Support

21

l of Liquid Xe 848 PMT immersed in LXe Only scintillation light High luminosity Unsegmented volume 3) The Liquid Xe calorimeter Experimental check In a Large Prototype

23 The liquid xenon calorimeter

24 1 st generation R6041Q2 nd generation R9288TB3 rd generation R9288ZA 228 in the LP (2003 CEX and TERAS) 127 in the LP (2004 CEX) 111 In the LP (2004 CEX)Not used yet in the LP Rb-Sc-Sb Mn layer to keep surface resistance at low temp. K-Sc-Sb Al strip to fit with the dynode pattern to keep surface resistance at low temp. K-Sc-Sb Al strip density is doubled. 4% loss of the effective area. 1 st compact version QE~4-6% Under high rate background, PMT output reduced by % with a time constant of order of 10min. Higher QE ~12-14% Good performance in high rate BG Still slight reduction of output in very high BG Higher QE~12-14% Much better performance in very high BG PMT development OK!

New (2009) liquid phase purification system completely made inside the collaboration (F. Sergiampietri) Xenon purification

LED PMT Gain Higher V with light att. Can be repeated frequently alpha PMT QE & Att. L Cold GXe LXe Laser (rough) relative timing calib. < 2~3 nsec Nickel  Generator 9 MeV Nickel γ-line NaI Polyethylene 0.25 cm Nickel plate 3 cm 20 cm quelle on off Illuminate Xe from the back Source (Cf) transferred by comp air  on/off Proton Acc Li(p,  )Be LiF target at COBRA center 17.6MeV  ~daily calib. Can be used also for initial setup  K Bi Tl F Li(p,  0) at 17.6 MeV Li(p,  1) at 14.6 MeV  radiative decay  0    - + p   0 + n  0   (55MeV, 83MeV)  - + p   + n (129MeV) 10 days to scan all volume precisely (faster scan possible with less points) LH 2 target  e+e+ e-e- e e     Lower beam intensity < 10 7 Is necessary to reduce pile- ups Better  t, makes it possible to take data with higher beam intensity A few days ~ 1 week to get enough statistics Xenon Calibration

Calorimeter energy Resolution and uniformity at 55 MeV by means of Energy resolution on the calorimer Entrance face  R = 1.5% FWHM = 4.6 %

29 CW beam line

30 LITHIUM  - spectrum + FLUORINE  - spectrum LiF target Automatic insertion/Extraction from the experiment center (target)

31 4) DAQ: trigger  Beam rate10 8 s -1  Fast LXe energy sum > 45MeV2  10 3 s -1 g interaction point (PMT of max charge) e + hit point in timing counter  time correlation  – e s -1  angular correlation  – e + 20 s -1 Uses easily quantities:  energy Positron-  coincidence in time and direction Built on a FADC-FPGA architecture More complex algorithms implementable 1 board 2 VME 6U 1 VME 9U Type2 LXe inner face (312 PMT) boards 20 x 48 Type Type2 2 boards boards 10 x 48 Type LXe lateral faces (488 PMT: 4 to 1 fan-in) Type2 1 board boards 12 x 48 Type Timing counters (160 PMT) Type2 2 boards 2 x 48 4 x 48 2 x 48  5 Hz in 2008 data taking

On-line E γ resolution σ = 3.8% 45 MeV threshold  from signal) 55 MeV γ -line from π 0 -decay

DAQ: readout The Domino Principle Shift Register Clock IN Out “Time stretcher” GHz  MHz Waveform stored Inverter “Domino” ring chain ns FADC 33 MHz Keep Domino wave running in a circular fashion and stop by trigger  Domino Ring Sampler (DRS) Low cost  One “oscilloscope” per channel

34 Liquid xenon: waveforms: 2 digitizers MHz 500 MHz or 2 GHz

35 4) 2008 run CW Calibration each three days during 2008 run - First 3 months physics data taking (september-december 2008) -DCHs instability on part of the chambers after some months of operation: reduction of efficiency to 30% (now 2009 corrected: new HV distribution system ) -Xe LY increase (now 2009 at the nominal value)

In 2009 xenon scintillation waveforms have the right time decay constant: longer for gammas

2008 run : muons stopped in target RD Programmed beam shutdowns RD Cooling system repair Air test in COBRA We also took RMD data once/week at reduced beam intensity

DCH resolutions from 2008 data Tracks with two turns in the spectrometer are used to detetrmine the Angular resolutions  =14 mrad   =10 mrad  = 25 mrad   = 18 mrad The edge of Michel positrons used to determine momentum resolution  core = 374 keV (60%)  tail1 = 1.06 MeV (33%)  tail2 = 2 MeV (7%)

Timing resolutions from 2008 data Intrinsic timing resolution by using positrons hitting several bars Photon - positron timing resolution by using Radiative muon decay: physical background Problems with DRS2 : will improve with DRS4  T  ps

Dedicated RMD runs at lower thresholds

Blind analysis: E  vs  t  e window

Sidebands (|  Te  | > 1 ns ) are used to MEASURE accidental background distributions Radiative decay + In flight positron annihilation + resolution + pileup: in agreement with MCs  Energy

Likelihood analysis: accidentals + radiative + signal PDFs to fit data + Feldman Cousins Best fit in the signal region Agreement of 3 different analyses

E  vs E e+

Normalization: measured Michel events simultaneous with the normal MEG trigger dove: pre-scaling Independent of instantaneous beam rate - Nearly insensitive to positron acceptance and efficiency factors associated with DCH and TC

90% CL limit 90 % C.L. N Sig  14.6 corresponds to BR(  →e  )  3.0 x Computed sensitivityComputed sensitivity 1.3 x Statistical fluctuation 5%Statistical fluctuation 5% From side bands analysis we expected 0.9 (left) and 2.1 (right) x From side bands analysis we expected 0.9 (left) and 2.1 (right) x Bad luckBad luck

Future prospects Re-start of data taking in september, until december (as in 2008) Instabilities eliminated: DRS2  DRS4 (timing improvement + noise reduction) Data taking and trigger efficiencies: 3-5 factor improvement Corresponding improvement in sensitivity: 2-4 * for 2009 run Continue running in for the final ( ) goal More details at Planning R & D Assembly Data Taking now LoI Proposal

50 PP (Y. Kuno et al., MEG TN1, 1997 and references) Det. 2Det. 1 For suitable geometry big  factors can be obtained This is not the case for MEG (detailed calculations are necessary ) In some theories (minimal SU(5) model) the positron has a definite helicity  P  is less effective

51 DRS charge vs Trigger WFM Charge (TC)