Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology O( ㏒ 2 M) Self-Organizing Map Algorithm Without Learning.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology VisualRank- Applying PageRank to Large-Scale Image Search.
Advertisements

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A 24-h forecast of solar irradiance using artificial neural.
國立雲林科技大學 National Yunlin University of Science and Technology Application of LVQ to novelty detection using outlier training data Hyoung-joo Lee, Sungzoon.
Intelligent Database Systems Lab Advisor : Dr.Hsu Graduate : Keng-Wei Chang Author : Gianfranco Chicco, Roberto Napoli Federico Piglione, Petru Postolache.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Yu Cheng Chen Author: Hichem.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 On Rival Penalization Controlled Competitive Learning.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 SCAN: A Structural Clustering Algorithm for Networks Xiaowei.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Discovering Leaders from Community Actions Presenter : Wu, Jia-Hao Authors : Amit Goyal, Francesco Bonchi,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Unsupervised pattern recognition models for mixed feature-type.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Student : Sheng-Hsuan Wang Department.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Human eye sclera detection and tracking using a modified.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 On-line Learning of Sequence Data Based on Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Graph self-organizing maps for cyclic and unbounded graphs.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Adaptive nonlinear manifolds and their applications to pattern.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Exploiting Data Topology in Visualization and Clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology HE-Tree: a framework for detecting changes in clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Looking inside self-organizing map ensembles with resampling.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology CONTOUR: an efficient algorithm for discovering discriminating.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology On Data Labeling for Clustering Categorical Data Hung-Leng.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2008.NN.10 Modeling propagation delays in the development.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Topology Preservation in Self-Organizing Feature Maps: Exact.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A self-organizing neural network using ideas from the immune.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Virus Pattern Recognition Using Self-Organization Map.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Ming Hsiao Author : Bing Liu Yiyuan Xia Philp S. Yu 國立雲林科技大學 National Yunlin University.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Hybrid Supervised ANN for Classification and Data Visualization.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 AC-ViSOM: Hybridising the Modified Adaptive Coordinate.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Exploiting Data Topology in Visualization and Clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. TurSOM: A Turing Inspired Self-organizing Map Presenter: Tsai Tzung Ruei Authors: Derek Beaton, Iren.
國立雲林科技大學 National Yunlin University of Science and Technology Self-organizing map learning nonlinearly embedded manifoldsmanifolds Author :Timo Simila.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 The Evolving Tree — Analysis and Applications Advisor.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology SEP/COP: An efficient method to find the best partition.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Novel Density-Based Clustering Framework by Using Level.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Efficient Optimal Linear Boosting of a Pair of Classifiers.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extensions of vector quantization for incremental clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A modified version of the K-means algorithm with a distance.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Fuzzy integration of structure adaptive SOMs for web content.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Rival-Model Penalized Self-Organizing Map Yiu-ming Cheung.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Unsupervised word sense disambiguation for Korean through the acyclic weighted digraph using corpus and.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Regularization in Matrix Relevance Learning Petra Schneider,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Visualization of multi-algorithm clustering for better economic decisions - The case of car pricing.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Mining massive document collections by the WEBSOM method Presenter : Yu-hui Huang Authors :Krista Lagus,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Enhanced neural gas network for prototype-based clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A self-organizing map for adaptive processing of structured.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Adaptive FIR Neural Model for Centroid Learning in Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A new data clustering approach- Generalized cellular automata.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Mechanisms and Cluster Identification with TurSOM.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Self Organizing Maps and Bit Signature: a study applied.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Wei Xu,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Hierarchical Tree SOM: An unsupervised neural.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author : Yongqiang Cao Jianhong Wu 國立雲林科技大學 National Yunlin University of Science.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Community self-Organizing Map and its Application to Data Extraction Presenter: Chun-Ping Wu Authors:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Dual clustering : integrating data clustering over optimization.
國立雲林科技大學 National Yunlin University of Science and Technology Mining Generalized Associations of Semantic Relations from Textual Web Content Tao Jiang,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Author : Sanghamitra.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Chun Kai Chen Author : Andrew.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Nonlinear Mapping for Data Structure Analysis John W.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Michael.
Presentation transcript:

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology O( ㏒ 2 M) Self-Organizing Map Algorithm Without Learning of Neighborhood Vectors Hiroki Kusumoto and Yoshiyasu Takefuji, IEEE Transaction on Neural Networks, Vol. 17, No. 6, 2006, pp Presenter : Wei-Shen Tai Advisor : Professor Chung-Chian Hsu 2007/3/1

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Outline Introduction Algorithm  Initialization  Subdividing method  Binary search Simulation and results Discussion Conclusion Comments

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Motivation BMU searching time  One input vector to search a winner vector by exhaustive search is equivalent to M 2.(M*M matrix) Similar input in different clusters  Two similar inputs that belong to the same cluster are mapped on the distant weight vectors. Neighborhood function  Time-consuming parameter tuning

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Objective A new SOM algorithm with O(log 2 M)  Composed of the subdividing method and the binary search method.  Reduces the computational costs and eliminates the time-consuming parameter tuning in the neighborhood function.  Similar input vectors will be clustered in the same neuron.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Initialization A feature map  A 2-D layer of M*M nodes (M = 2m + 1, m = 1, 2, 3,...). Four initial nodes  On the coordinates (1, 1), (1,M), (M, 1), and (M, M) have k-dimensional weight vectors W(x, y).  They are trained by the basic SOM with total O(1) computation, respectively.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Subdividing Method Subdividing  Draws center lines between all neighboring, it subdivides an M ’* M ’ feature map into a (2M ’- 1) * (2M ’- 1) feature map. Weight of the new gray nodes  The average of the values of weight vectors of the closest nodes to the new node.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Binary Search and learning Step A. search space  x 1 ≦ x ≦ x 2 and y 1 ≦ y ≦ y 2  Closest vector to X(t) Step B. dividing search space  A winner vector is on a quarter space where the closest vector W(x c, y c ) exits. Learning

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Simulations and results Computational cost Codon Frequencies of E. Coli K12 Genes

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Discussion Problem in basic SOMs with a large feature map  The proposed algorithm does not search all weight vectors for the winner vectors.  It can avoid two similar input vectors that belong to the same cluster are mapped on the distant weight vectors. Subdividing method  The search space is reduced to a quarter that includes the temporary winner vector. Binary search method  Reduces the computational costs and can work only when it is combined with the subdividing method.  Eliminates the time-consuming parameter tuning in neighborhood function.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Transmissions of a learning effect Learning effect  Each square denotes a weight vector and L denotes the variation of W(M, M) by the training.  L/2 is transmitted to the just adjacent two vectors out of five new vectors and L/4 to the center vector and none to the other two far vectors, accordingly.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Conclusion A new SOM algorithm with computational cost O(log 2 M)  Eliminates the time-consuming parameter tuning in neighborhood function in SOM applications.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab Comments Advantage  A novel idea for reducing the computational cost and parameter tuning in neighborhood function in SOM.  Subdividing method is applicable for reducing search space. Drawback  If the initial weighting of each neuron is arbitrary, it maybe causes some subdividing problems such as the spectrum of each neuron are extreme different. Application  SOM related applications.