The GERDA experiment L. Pandola INFN, Gran Sasso National Laboratory for the GERDA Collaboration WIN2009, Perugia, September 17 th 2009.

Slides:



Advertisements
Similar presentations
COBRA A new Approach to -Decay UK HEP Forum, Abingdon, May 11 th, 2003 Daniel Muenstermann University of Dortmund COBRA.
Advertisements

S. Belogurov, ITEP/INR Moscow GERDA experiment New experiment for the search of neutrinoless double beta decay of 76 Ge at LNGS GERmanium Detector.
Activity for the Gerda-specific part Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton.
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
LNGS (GERmanium Detector Assembly Stefan Schönert MPIK Heidelberg NOW 2004, Sept. 12, 2004.
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
K. Zuber, Uni. Sussex IDEA Meeting, Milano 9. Nov Status of COBRA.
Pulse Shape Analysis with Segmented Germanium Detector Xiang Liu, Max-Planck-Institut für Physik 1.Motivation 2.Pulse properties 3.Analysis procedure 4.Some.
Neutrinoless Double Beta Decay – Status of GERDA
COBRA Kai Zuber University of Sussex 5 th SNOLAB Workshop,
September 14, 2007Hardy Simgen, TAUP 2007 / Sendai1 Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
M. Di Marco, P. Peiffer, S. Schönert
Neutrinoless Double Beta Decay – Status of GERDA
Results from M. Di Marco, P. Peiffer, S. Schönert Thanks to Davide Franco and Marik Barnabe Heider Gerda collaboration meeting, Tübingen 9th-11th.
WP2 Background simulations Outline Execution plan for the third year Progress of the work Activities and news.
GERDA: GERmanium Detector Array
Erice, Kai Zuber1 Status of the COBRA Experiment K. Zuber, TU Dresden.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
COBRA Double Beta Decay Experiment D.Y. Stewart, Dr. Y.A. Ramachers, Prof. P.F.Harrison Experimental Particle Physics Group University of Warwick What.
Majorana collaboration meeting, Seattle, Aug.7 - Aug. 9 Béla MajorovitsGERDA detector mounting 1 GERDA Detector Mounting The Detector Holders Detector.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
Background Subtraction in Next Generation 0  Experiments Double-Beta Decay Challenges in 0  Decay Detection Small 0νββ decay half-life leads to low.
GERmanium Detector Array – a Search for Neutrinoless Double Beta Decay X. Liu - MPI für Physik, München Symposium – symmetries and phases in the universe,
Activity report of TG10 L. Pandola (LNGS) for the TG10 group Gerda Collaboration Meeting, February 3-5, 2005 (simulations and background studies)
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Status of COBRA 6 th SNOLAB Workshop, Picture courtesy
Task Group 2 Iris Abt, Michael Altmann, Kevin Kroeninger, Bela Majorovits, Franz Stelzer, Xiang Liu 1.Detector Development 2.Suspension & Cabling 3.MC.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
Present status of CUORE / CUORICINO Andrea Giuliani Università dell’Insubria and INFN Milano 3rd IDEA meeting, Orsay, April 14 – 15, 2005.
Sensitivity to half life of 0νββ decay (left) and to effective Majorana neutrino mass (right) of an experiment as a function of exposure for different.
Context: astroparticle physics, non-accelerator physics, low energy physics, natural sources physics, let’s-understand-the-Universe physics mainly looking.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
Operation of bare Ge-diodes in LN/LAr 1 st IDEA meeting Como, April 8 (2004) Stefan Schoenert.
Planned Transregional Collaborative Research Center TR27: Neutrinos and Beyond Project A4: Development of segmented germanium detectors for the investigation.
M. Wojcik Instytute of Physics, Jagiellonian University
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
Half Day IoP Meeting: Neutrinoless Double Beta Decay, University College London, Great Britain The GERDA Experiment at Gran Sasso Grzegorz Zuzel.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
MaGe framework for Monte Carlo simulations MaGe is a Geant4-based Monte Carlo simulation package dedicated to experiments searching for 0 2  decay of.
MaGe: a Monte Carlo framework for the GERDA and Majorana experiments Luciano Pandola INFN, Laboratori Nazionali del Gran Sasso for the MaGe development.
Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Cracow, Poland The GERDA Experiment at Gran.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
CUTAPP05 A. Caldwell/MPI.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Background Subtraction in Next Generation 0  Experiments Double-Beta Decay Challenges in 0  Decay Detection Benjamin Spaun Whitworth College Advisors:
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Genova, July 18 th, 2005 Geant4 and the underground physics community.
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
M.Altmann, GERDA Status Report SNOLAB Workshop IV, Investigating Neutrinoless Double Beta Decay Status of the GERDA Experiment Michael Altmann.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
November 19, 2007Hardy Simgen, IDEA-Meeting Paris Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
MPI für Physik, Fachbeirat, Béla Majorovits The GERDA experiment Béla Majorovits.
1 DarkSide Collaboration APC Paris, France Augustana College, USA Black Hills State University, USA Fermilab, USA IHEP, China INFN Laboratori Nazionali.
JINR group V. Brudanin, V. Egorov, K. Gusev, A. Klimenko, O. Kochetov, I. Nemchenok, V. Sandukovsky, A. Smolnikov, M.Shirchenko, D. Zinatulina Project.
Enter the DarkSide Stefano Davini University of Houston RICAP-13.
Towards pulse shape calculation and analysis for the GERDA experiment Kevin Kröninger, MPI für Physik International School of Nuclear Physics, Erice 2005.
B. Majorovits (MPI für Physik) for the collaboration
Overview of GERDA simulation activities with MaGe
Prompt Gamma Activation Analysis on 76Ge
GERDA Collaboration Meeting,
The Heidelberg Dark Matter Search Experiment
Neutrino Telescope Stefan Schönert (TUM)
Munich GERDA/Majorana MC Meeting
Presentation transcript:

The GERDA experiment L. Pandola INFN, Gran Sasso National Laboratory for the GERDA Collaboration WIN2009, Perugia, September 17 th 2009

September 17th, 2009Luciano Pandola 2 2  and 0 2  decay n e-e- e-e- p np = R L W-W- W-W- (A,Z+1) (A,Z) (A,Z+2)   2 2  decay: (A,Z)  (A,Z+2) +2e - +2 SM allowed & observed on several isotopes with forbidden single- . Conserves lepton number, but long half-life because 2 nd order (10 19 ÷ y) 0 2  decay: (A,Z)  (A,Z+2) +2e - Violates lepton number by two units. Possible only if s Majorana & ‹m  › >0.

September 17th, 2009Luciano Pandola 0 2  decay 1/  = G(Q,Z) |M nucl | 2 2 0νββ Decay rate Phase space (~Q 5 ) Nuclear matrix element (NME) Majorana neutrino mass |  i U ei 2 m i | If mediated by the exchange of massive Majorana neutrinos: Signature of 0 2  : mono-energetic line at the Q  (2039 keV for 76 Ge) Furthermore: e - events rather than  -rays (different topology  energy released in a smaller volume)

September 17th, 2009Luciano Pandola Why choose 76 Ge? challenge 76 Ge advantage large amount isotope M long exposure T existing detectors from past experiments IGEX & Heidelberg-Moscow high signal efficiency  source=detector, 85~95%  Ultra-pure material (HPGe) excellent energy resolution  FWHM ~3keV at 2MeV, small search window  reduce background, including 2  new development  segmentation, new type of Ge detector etc… extremely low level background rate b: background rate  : energy resolution  need enrichment (A=7.6%, most backgrounds scale with target mass)  Q  =2039 keV (< 2614 keV from 208 Tl)

September 17th, 2009Luciano Pandola Q ββ ? Bi-214 The present situation with 76 Ge Claim for evidence of 0 2  of 76 Ge based on the data of Heidelberg-Moscow H.V. Klapdor-Kleingrothaus et al. Phys. Lett. B 586 (2004) enriched 76 Ge diodes; exposure: 71.7 kg·y background at Q  : 0.1 counts/(keV·kg·y) T 1/2 = 1.19 ·10 25 y (3  range: ·10 25 y) No evidence (upper limit only) from IGEX D. Gonzalez et al. Nucl Phys B (Proc. Suppl.) 87 (2000) enr Ge diodes; exposure (8.87 kg۰y) T 1/2 > 1.57 ·10 25 y (90% CL) Scrutinize claim using the same isotope (no NME uncertainties)  reduce background by a factor of 100, or more

September 17th, 2009Luciano Pandola 1400 m, ~ m.w.e Hall A The GERDA experiment at LNGS

September 17th, 2009Luciano Pandola The GERDA concept - cheap and safe - neutron moderator - Cherenkov medium for 4  muon veto Additional water shielding: Use cryogenic liquid (liquid argon) as cooling medium and shield simultaneously  array of naked detectors LAr required to shield  radiation from the stainless steel cryostat and from the rock G. Heusser, Ann. Rev. Nucl. Part. Sci. 45 (1995) 543 external background from ,  and n < counts/(keV·kg·y) Ge Array Germanium detectors Water / Muon-Veto Clean room / lock Steel-tank + Cu lining Liquid argon

September 17th, 2009Luciano Pandola GERDA goals and sensitivity GERDA goal: counts/(keV kg y) improvement of a factor 100 with respect of H-M Phase II: measure T 1/2 or improve limit new better enr Ge detectors (bought 40 kg of raw material) exposure: 100 kg·y bck: counts/(keV kg y) claim phase II Phase I: test claim crystals from HM and IGEX exposure: 15 kg·y bck: counts/(keV kg y) (internal 60 Co contamination) phase I

September 17th, 2009Luciano Pandola GERDA Collaboration Institute for Reference Materials and Measurements, Geel, Belgium Institut für Kernphysik, Universität Köln, Germany Max-Planck-Institut für Kernphysik, Heidelberg, Germany Max-Planck-Institut für Physik (Werner-Heisenberg-Insititut), München, Germany Physikalisches Institut, Universität Tübingen, Germany Technische Universität Dresden, Germany Dipartimento di Fisica dell'Università di Padova e INFN Padova, Padova, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy Università di Milano Bicocca e INFN Milano, Milano, Italy Jagiellonian University, Cracow, Poland Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Institute for Theoretical and Experimental Physics, Moscow, Russia Joint Institute for Nuclear Research, Dubna, Russia Russian Research Center Kurchatov Institute, Moscow, Russia University Zurich, Switzerland > 90 scientists

September 17th, 2009Luciano Pandola Cryotank and water tank constructed cryostat (Mar. 2008)water tank (Aug. 2008)

September 17th, 2009Luciano Pandola Clean room and infrastructure ok clean room, May 2009 cryogenic infrastructure is being constructed

September 17th, 2009Luciano Pandola PMTs in water tank mounting PMTs in watertank completed August 2009

September 17th, 2009Luciano Pandola Phase I detectors: status Phase I: 3 IGEX & 5 Hd-Moscow detectors, 17.9 kg 30g Cu, 6.3g PTFE, 1g Si per detector all of them stored underground (no activation) Heidelberg- Moscow & IGEX (before reprocessing) reprocessed detectors tested in LAr (at 1.3 MeV) All detectors reprocessed and tested in liquid Argon FWHM ~2.5keV (at 1332keV), leakage current (LC) stable

September 17th, 2009Luciano Pandola Phase I detectors: long-term stability Tested procedure for handling detectors defined Observed increase of leakage current well understood  charge trapping above passivation layer (PL) Detector without PL inside groove, long term performance stable detector leakage current with & without PL passivation layer in groove detector test bench

September 17th, 2009Luciano Pandola Phase II detector candidate 18-fold segmented detector Prototype available in Munich and extensively tested  data used to validate MC and test rejection power by segment anti-coincidence  novel “snap contact”  small amount of extra material 6x along  3x along z prototype Double-escape peak (single-site dominant) 1620 keV 212 Bi (multi-site dominant) Abt et al. Eur.J.Phys. C52 (2007) 19 82% 10% 228 Th

September 17th, 2009Luciano Pandola Phase II detector candidate point contact detector prototypes available in Heidelberg, LNGS, Zurich, Hades  not segmented but powerful pulse shape  less DAQ channels  Observed complete charge collection from full detector volume  No position dependence of pulse height and resolution  Similar reduction factor achieved D..Budjas et al. arXiv: Th Production yield under investigation. Very interesting candidate if mass production feasible ~ 800 g

September 17th, 2009Luciano Pandola Monte Carlo package MaGe Geant4-based, developed together with Majorana Flexible and optimized for low energy & low background MC Code sharing & physics verification 2 2  0 2  detector holder

September 17th, 2009Luciano Pandola MC simulation of Phase II background PartBackground contribution [10 -4 counts/(kg·keV·y)] Detector 68 Ge Co0.3 Bulk3.0 Surf.3.5 Holder3.3 Cabling4.8 Electronics6.8 LAr1.0 Infrastructure0.2 Muons and neutrons2.0 Total29.2 further reduction expected from PSA after 2 years for 19 chans/detector Dominated by detector and close parts  optimization

September 17th, 2009Luciano Pandola R&D: preAmplifier working at 77 K cold warm PZ-0 Equivalent noise charge at 77 K (300 K) measured spectrum at 77K 15 ns rise time driving a 10-m coaxial cable

Outlook Experiment approved in 2005 by LNGS with its location in the Hall A Construction started (almost completed) in LNGS Hall A All phase I detectors (8 detectors, ~18 kg) refurbished & ready  scrutinize present claim with 1 year of data Parallel R&D for the definition of phase II detectors Cold front-end electronics meets specifications (R&D) Joint Monte Carlo activity with Majorana (MoU) End of installation and start of commissioning within 2009

September 17th, 2009Luciano Pandola Backup slides

September 17th, 2009Luciano Pandola R&D with point-contact detectors coaxial modified electrode Luke et al., IEEE TNS 36 (1989)‏ Barbeau et al., nucl-ex/ v1 ‘modified electrode detector’