High resolution spectroscopy with a femtosecond laser frequency comb

Slides:



Advertisements
Similar presentations
Femtosecond lasers István Robel
Advertisements

High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
1 Measurement of the Gravitational Time Delay Using Drag-Free Spacecraft and an Optical Clock Neil Ashby, Dept. of Physics, UCB 390, University of Colorado,
Sub-Doppler Resolution Spectroscopy of the fundamental band of HCl with an Optical Frequency Comb ○ K. Iwakuni, M. Abe, and H. Sasada Department of Physics,
Optical frequency combs for astronomical observations Hajime Inaba, Kaoru Minoshima, Atsushi Onae, and Feng-Lei Hong National Metrology Institute of Japan.
In Search of the “Absolute” Optical Phase
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Tunable Laser Spectroscopy Referenced with Dual Frequency Combs International Symposium on Molecular Spectroscopy 2010 Fabrizio Giorgetta, Ian Coddington,
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Precision measurement with ultracold atoms and molecules Jun Ye JILA, National Institute of Standards and Technology and Department of Physics, University.
Heidelberg, 15 October 2005, Björn Hessmo, Laser-based precision spectroscopy and the optical frequency comb technique 1.
Chapter 8 Doppler-free laser spectroscopy. Contents 8.1 Doppler broadening of spectral lines 8.2 The crossed-beam method 8.3 Saturated absorption spectroscopy.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy Kevin Cossel Ye Group JILA/University of Colorado-Boulder OSU Symposium on Molecular.
General Properties of Light Light as a wave Speed Wave properties: wavelength, frequency, period, speed, amplitude, intensity Electromagnetic wave.
Dylan Yost, Arman Cingoz, Tom Allison and Jun Ye JILA, University of Colorado Boulder Collaboration with Axel Ruehl, Ingmar Hartl and Martin Fermann IMRA.
Generation of short pulses
Spectroscopy 2: Electronic Transitions CHAPTER 14.
Single photon sources. Attenuated laser = Coherent state Laser Attenuator Approximate single photon source Mean number of photon per pulse.
Characterization of statistical properties of x-ray FEL radiation by means of few-photon processes Nina Rohringer and Robin Santra.
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
1 09:05-09:55 am, Wednesday, September 22, 2010 CHEM 8152: Analytical Spectroscopy Smith 1111, University of Minnesota Resonant cavities Gain Threshold.
First year talk Mark Zentile
The Performance of Chip-Scale Atomic Clocks V. Gerginov 1, S. Knappe 2, P.D.D. Schwindt 3, V. Shah 2, J. Kitching 3, L. Hollberg 3 In collaboration with:
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.
LASERs Light Amplification by Stimulated Emission of Radiation.
National Institute of Standards and Technology Broadband Spectroscopy of CO 2 Bands Near 2μm Using a Femtosecond Mode-Locked Laser ISMS Session.
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Spectroscopy with comb-referenced diode lasers
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Tunable Mid-IR Frequency Comb for Molecular Spectroscopy
CLEO2004 K. L. Ishikawa No. 0 Enhancement in photoemission from He + by simultaneous irradiation of laser and soft x-ray pulses Kenichi L. Ishikawa Department.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Alvaro Sanchez Gonzalez Prof. Jon Marangos Prof. Jim Clarke
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Multiplexed Detection of CO2 using a Novel Dual-Comb Spectrometer
MIT Optics & Quantum Electronics Group Seeding with High Harmonics Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
K. Iwakuni, H. Sera, M. Abe, and H. Sasada Department of Physics, faculty of Science and Technology, Keio University, Japan 1 70 th. International Symposium.
1 Mid term – Laser Swarm Optical Receiving Payload Single-Photon Detection -Photonmultiplier tube -Single Photon Avalanche Diode(SPAD) Wavelength Estimation.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Millimeter Wave Spectroscopy of Cold 85 Rb Atoms JIANING HAN, YASIR JAMIL, PAUL TANNER, DON NORUM, T. F. GALLAGHER University of Virginia Supported by:
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
Theory for Direct Frequency-Comb Spectroscopy Daniel Felinto and Carlos E.E. López 65 th International Symposium on Molecular Spectroscopy June 24, 2010.
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
1 Room temperature slow light with 27 GHz bandwidth in semiconductor quantum dots Giovanni Piredda, Aaron Schweinsberg, and Robert W. Boyd The Institute.
1 Frekvenčni standard in merjenje z optičnim glavnikom.
R.K. Altmann, L.S. Dreissen, S. Galtier and K.S.E. Eikema
Measurement Science Science et étalons
Multiplexed saturation spectroscopy with electro-optic frequency combs
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Two-Photon Absorption Spectroscopy of Rubidium
Precision Control Optical Pulse Train
Presentation transcript:

High resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov1 Scott Diddams2, Albrecht Bartels3, Carol E. Tanner1 and Leo Hollberg2 1Department of physics, University of Notre Dame, Notre Dame, IN 46556 2National Institute of Standards and Technology, 325 Broadway M.S. 847, Boulder, CO 80305 3Gigaoptics GmbH (see exhibit)

Pulsed laser spectroscopy 1970s: Ideas of 2-photon spectroscopy with pulsed sources from T. W. Hänsch and V. P. Chebotaev; “Narrow resonances of two-photon absorption of super-narrow pulses in a gas” Y. V. Baklanov and V. P. Chebotaev, Appl. Phys. 12, 97 (1977). “Coherent Two-Photon Excitation by Multiple Light Pulses” R. Teets, J. Eckstein, and T. W. Hänsch Phys. Rev. Lett. 38, 760-764 (1977). “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser”, M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, Opt. Commun, 125, 70-76, (1996). “High sensitivity phase spectroscopy with picosecond resolution” J. –C. Diels, B. Atherton, S. Diddams; Proceedings of 5th European Quantum Electronics Conference, 29 195–195, (1994). “United Time-Frequency Spectroscopy for Dynamics and Global Structure”, A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, J. Ye, Science Express, 1105660, 2004.

Direct single-photon spectroscopy using a femtosecond laser Bartels et al., Opt. Lett. 27(20) 1839, 2002 Bartels et al., Opt. Lett. 29,10,1081,2004

133Cs energy diagram and FLFC output spectrum

Optical frequency measurements Experimental setup Optical frequency measurements

D1 line @ 14nW power D2 line @ 1.5 nW power

D1 line measurements F-F’ Previous1 (kHz) This work (kHz) Difference (kHz) F3-F3 335120562759.7(4.9) 335120562753.7(85.0) -6.0 ( 0.1 sigma) F3-F4 335121730483.2(5.3) 335121730500.8(16.4) 17.6 (1 sigma) F4-F3 335111370130.2(4.6) 335111370146.3(10.5) 16.1 (1.4 sigma) F4-F4 335112537853.9(4.0) 335112537861.7(28.0) 7.8 ( 0.3 sigma) 1V. Gerginov, K. Calkins, C. E. Tanner, A. Bartels, J. McFerran, S. Diddams, L. Hollberg, in preparation

D2 line measurements F-F’ Previous1 (kHz) This work (kHz) Difference (kHz) F3-F2 351730549621.5(5.5) 351730549616.3(9.7) -5.2 (0.5 sigma) F3-F3 351730700845.9(5.5) 351730700766.1(98.5) -79.8(0.8 sigma) F3-F4 351730902133.2(5.6) 351730902116.9(34.2) -16.3 (0.5 sigma) F4-F3 351721508210.5(5.5) 351721508195.1(21.7) -15.4 (0.7 sigma) F4-F4 351721709496.9(5.5) 351721709471.6(167.8) -25.3( 0.2 sigma) F4-F5 351721960585.7(5.5) 351721960563.5(4.5) -22.2( 3 sigma) 1V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, L. Hollberg, PRA 70, 042505, 2004

Cs D2 line optical clock   Experimental setup Cs D2 line optical clock  

Cs D2 line optical clock performance

Conclusions Optical frequency measurements using a single comb component; A stable array of optical and microwave frequencies; Potential for femtosecond-laser based optical clocks;

Typical optical references performance Typical optical frequency reference uncertainties: This system: 60kHz @ 852nm (1.7×10-10) I2 stabilized He-Ne laser: 12 kHz @ 633 nm (2.5×10-11) I2 stabilized SHG of Nd:YAG: 5 kHz @ 532 nm (9×10-12) Rb 2-photon stabilized diode laser: 5 kHz @ 778nm (1.2×10-11) GPS: <1kHz with 1-2 days of averaging

Conclusions One-photon high resolution spectroscopy using the output of a femtosecond laser; Optical frequency measurements with accuracy better than 100kHz, reaches below 10 kHz; SubDoppler spectroscopy with 1nW laser power; Optical and microwave output with absolute accuracy at 10-10 level; Potential for femtosecond-laser based optical clocks.

Doppler shift compensation

D2 line excitation