1 J.M. Heuser − STS Development Microstrip detector GSI-CIS Johann M. Heuser, GSI Li Long, CIS CBM Collaboration Meeting, GSI, 27.2.2008 Update on.

Slides:



Advertisements
Similar presentations
Silicon Technical Specifications Review General Properties Geometrical Specifications Technology Specifications –Mask –Test Structures –Mechanical –Electrical.
Advertisements

Detector module development for the CBM Silicon Tracking System Anton Lymanets for the CBM collaboration Universität Tübingen, Kiev Institute for Nuclear.
Silicon Preshower for the CMS: BARC Participation
Belle-II Meeting Nov Nov Thomas Bergauer (HEPHY Vienna) Status of DSSD Sensors.
1 Generic Silicon Detector R&D Thomas Bergauer Institute for High Energy Physics (HEPHY) Austrian Academy of Sciences, Vienna for the SiLC Collaboration.
Workshop on Silicon Detector Systems, April at GSI Darmstadt 1 STAR silicon tracking detectors SVT and SSD.
N-XYTER Hybrid Developments Christian J. Schmidt et al., GSI Darmstadt JINR, Dubna, Oct. 15 th 2008.
128 September, 2005 Silicon Sensor for the CMS Tracker The Silicon Sensors for the Inner Tracker of CMS CMS Tracker and it‘s Silicon Strip Sensors Radiation.
Solid State Detectors-2
Module Production for The ATLAS Silicon Tracker (SCT) The SCT requirements: Hermetic lightweight tracker. 4 space-points detection up to pseudo rapidity.
Sensors for CDF RunIIb silicon upgrade LayerR min (cm)1 MeV eq-n cm * * * * * *10.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
St Malo, 13 th April 2002Václav Vrba, Institute of Physics, AS CR 1 Václav Vrba Institute of Physics, AS CR, Prague Silicon pad sensors for W-Si ECal.
Semiconductor detectors
Characterization of double sided silicon micro-strip sensors with a pulsed infra- red laser system for the CBM experiment Pradeep Ghosh 1,2 & Jürgen Eschke.
J.M. Heuser — CBM Silicon Tracker 1 Johann M. Heuser, GSI Darmstadt CBM Collaboration Meeting JINR Dubna, 15 October 2008 CBMCBM Review of the first in-beam.
1 J.M. Heuser − Status of the Silicon Tracking System Johann M. Heuser, GSI Darmstadt CBM Collaboration Meeting JINR Dubna, 16 October 2008 CBMCBM Status.
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
Silicon Microstrip detector Single sided and double sided K.Kameswara rao, Tariq Aziz, Chendvankar, M.R.Patil Tata institute of fundamental research, Mumbai,
Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN.
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
Status of the Low-Resistance (LowR) Strip Sensors Project CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
— Test board for CBM01B2 baby detectors — Anton Lymanets & Johann Heuser CBM collaboration meeting GSI, 27 February 2008 Microstrip detector testing at.
M. Lozano, C. Fleta*, G. Pellegrini, M. Ullán, F. Campabadal, J. M. Rafí CNM-IMB (CSIC), Barcelona, Spain (*) Currently at University of Glasgow, UK S.
Electrical characteristics of un-irradiated ATLAS07 mini strip sensors A.Chilingarov, Lancaster University ATLAS Tracker Upgrade UK Workshop Coseners House,
Minni Singla & Sudeep Chatterji Goethe University, Frankfurt Development of radiation hard silicon microstrip detectors for the CBM experiment Special.
Thomas Jefferson National Accelerator Facility Page 1 SVT – Review January Sensors for the Silicon Vertex Tracker Amrit Yegneswaran.
1 Development of radiation hard microstrip detectors for the CBM Experiment Sudeep Chatterji GSI Helmholtz Centre for Heavy Ion Research DPG Bonn 16 March,
1 J.M. Heuser – CBM Silicon Tracking System Roadmap for the development of STS module demonstrators Concept Common interfaces/dimensions Some technical.
Silicon detector processing and technology: Part II
1 J.M. Heuser − Silicon detector systems for CBM Silicon detector systems for CBM Johann M. Heuser, GSI CBM meeting, University of Jammu, 14 February 2008.
News on microstrip detector R&D —Quality assurance tests— Anton Lymanets, Johann Heuser 12 th CBM collaboration meeting Dubna, October
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
CBM Silicon Tracking System. Microstrip Detector Module Assembly and Test V.M. Pugatch Kiev Institute for Nuclear Research GSI (CBM experiment), Darmstadt.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
1 Device Simulations & Hardware Developments for CBM STS Sudeep Chatterji CBM Group GSI Helmholtz Centre for Heavy Ion Research CBM Collaboration Meeting,
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
Solid State Detectors for Upgraded PHENIX Detector at RHIC.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
CBM Silicon Tracking System. First results of the detector module pre-prototype test. V.M. Pugatch Kiev Institute for Nuclear Research 11 th CBM Collaboration.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
Paul Dolejschi Progress of Interstrip Measurements on DSSDs SVD.
1 J.M. Heuser − Status of the Silicon Tracking System Johann M. Heuser CBM Collaboration Meeting GSI Darmstadt, 12 March 2009 Status of the CBM Silicon.
CBM Collaboration Meeting. GSI, Darmstadt CBM Silicon Tracking System. CBM-01 sensors characterization. V.M. Pugatch Kiev Institute for Nuclear.
Development of radiation hard Sensors & Cables for the CBM Silicon Tracking System Sudeep Chatterji On behalf of CBM-STS Collaboration GSI Helmholtz Centre.
Paul Dolejschi Characterisation of DSSD interstrip parameters BELLE II SVD-PXD Meeting.
Studies on n and p-type MCz and FZ structures of the SMART Collaboration irradiated at fluences from 1.0 E+14 to 5.6E+15 p cm -2 RD50 Trento Workshop ITC-IRST.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
ADC values Number of hits Silicon detectors1196  6.2 × 6.2 cm  4.2 × 6.2 cm  2.2 × 6.2 cm 2 52 sectors/modules896 ladders~100 r/o channels1.835.
L. Bosisio - 2nd SuperB Collaboration Meeting - Frascati SuperB SVT Update on sensor and fanout design in Trieste Irina Rashevskaya, Lorenzo.
MICRO-STRIP METAL DETECTOR FOR BEAM DIAGNOSTICS PRINCIPLE OF OPERATION Passing through metal strips a beam of charged particles or synchrotron radiation.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
QA Tests Tests for each sensor Tests for each strip Tests for structures Process stability tests Irradiation tests Bonding & Module assembly Si detectors1272.
0 Characterization studies of the detector modules for the CBM Silicon Tracking System J.Heuser 1, V.Kyva 2, H.Malygina 2,3, I.Panasenko 2 V.Pugatch 2,
Design and development of thin double side silicon microstrip sensors for CBM experiment Mikhail Merkin Skobeltsyn Institute of Nuclear Physics Moscow.
1 J.M. Heuser − STS R&D Johann M. Heuser, GSI CBM-STS Project Leader Meeting on Experiment with external HI beams of the Nuclotron-M JINR, 4 February 2011.
The STS-module-assembly:
Progress with System Integration of the CBM Silicon Tracking Detector
SuperB SVT Silicon Sensor Requirements
Thin Planar Sensors for Future High-Luminosity-LHC Upgrades
Design and fabrication of Endcap prototype sensors (petalet)
Pradeep Ghosh for the CBM Collaboration Goethe-Universität, Frankfurt
Vertex Detector Overview Prototypes R&D Plans Summary.
Presentation transcript:

1 J.M. Heuser − STS Development Microstrip detector GSI-CIS Johann M. Heuser, GSI Li Long, CIS CBM Collaboration Meeting, GSI, Update on ongoing and launched activities

2 J.M. Heuser − STS Development tracking station with readout electronics outside of the aperture 2 projective coordinates, if possible in one thin silicon layer: double-sided strip detector electrical contacts at sensor's top/bottom edge: ladder construction no "dead" region in the corners, despite of strips oriented under a stereo angle. high radiation tolerance: design, material 1 st R&D study GSI-CIS: "CBM01" - focus on connectivity Double-sided detector, with double-metal connections of strips in the corner regions contact pad rows at top and bottom edge. Technical challenge CBM STS tracking station Detector module readout direction p side "double metal" blue: double metal connect- ions of strips I to III n side: "vertical" strips I II III

3 J.M. Heuser − STS Development Microstrip detector prototype CBM01, 8/2007 4" wafer, 285 µm Si Test sensors Double-sided, double-metal, 1024 strips per side, 50 µm pitch, 15º stereo angle, full-area sensitive, contacts at top + bottom edge, size: 56  56 mm 2 Double-sided, single-metal, 256  256 strips, orthogonal, 50(80) µm pitch, size: 14  14 (22  22) mm 2 Main sensor

4 J.M. Heuser − STS Development Characterization at CIS IV and CV behaviour of CBM01B1, CBM01B2, CBM02 (Mr. John et al.) reported at CBM Meeting September 2007 U [V] I [µA] U[V] I [µA] U [V] 1/C 2 [pF - 2 ]

5 J.M. Heuser − STS Development Find application in various activities of beginning detector module R&D Only available CBM-specific microstrip detectors GSI: Test board (CBM01B2, preparation, report A. Lymanets) Test beam tracking module (planned) KINR Kiev: Pre-prototype module & CBM01B1 detector tests (electrical, diode laser, radioactive source) (report V. Pugatch) Kharkov: Test board with microcable fanout structure (planned) Cracow: n-XYTER-SUCIMA board with CBM01B2 (planned) + many new ideas ooooooooo

6 J.M. Heuser − STS Development Towards 2 nd design iteration CIS activity in frame of german BMWI project INNOWAT -“SPID“: Test wafer to explore primarily radiation tolerance Bias method: punch-through, poly-silicon Breakdown voltage: charge, micro discharge Insulation technology: p-spray, p-stop, field plate

7 J.M. Heuser − STS Development Full detectors 7 pixel detectors; 18 strip detectors. Test structures: 3 Pad diodes, 4 Gate diodes, 6 PDTF, 2 SIMS, 2 SDM. Process status 2/2008: First active implant finished. Second manufacture run ("technology wafer") L. Long and R. Rolf, CIS

8 J.M. Heuser − STS Development ohmic side Simulation of electrical properties Layout calculation: coupling capacitance front21 pF/cm coupling capacitance back15 pF/cm resistance for front metal 25 Ohm/cm resistance for back metal 16 Ohm/cm resistance for cross connection 28 Ohm/cm Technology simulation: resistance for p front66 kOhm/cm resistance for n back44 kOhm/cm junction side Electrical field:

9 J.M. Heuser − STS Development WaferPolyp-Stopp-SprayPoly (1 MOhm) 1XX 3,5e12,115keV 2X 1.5MOhm 3XX 3,2e12, 115keV 4X 1.5MOhm 5XX 4,0e12, 115keV 6X 1.5MOhm 7XX 5e12, 80keV 8X 9XX 1.1e13 70keVX 3,5e12,115keV 10XX 2e13 70keVX 3,5e12,115keV 11XX 1.1e13 70keV 12XX 2e13 70keV 13X 1.1e13 70keVX 3,5e12,115keV 14X 2e13 70keVX 3,5e12,115keV 15X 1.1e13 70keV 16X 2 e13 70keV 17X 3,5e12,115keV 18X 3,5e12,115keV Technology variations in detail (I) Wafers with different processing

10 J.M. Heuser − STS Development NameQuantitybiasingisolationpitchGuard Twpx11, PixelPunchSpray80*120No Twpx31, PixelPunchSpray80*120Guard Twsp52,stripPunchSpray80Guard Twsp61,stripPunchSpray50Guard mastercis5, PixelPunchSprayGuard Cap_gcdiode_ntestfeld2Test structure Cap_gcdiode_ptestfeld2Test structure Diode1_ptestfel_1Test structure Diode2_ptestfeld1Test structure Diode3_ptestfeld1Test strckture PDTF02st1Test structure PDTF02nn1Test structure PDTF02n1Test structure PDTF02p1Test structure PDTF02pn1Test structure PDTF02pp1Test structure Technology variations in detail (II) Detectors and test structures on the wafers

11 J.M. Heuser − STS Development NameQuantitybiasingisolationpitchGuard sdm2Test structure Sims12Test structure Twpsp151,stripPolySpray80,48Guard Twpsp121,strippunchSpray80Guard Twpsp131,stripPoly+punchPstop+ Spray80Guard Twpsp141,strippunchSpray80Guard Twpsp21,stripPolySpray50Guard Twpsp221,strippunchSpray50Guard Twpsp231,strippoly+punchPstop+ Spray50Guard Twpsp241,strippoly+punchPlate+ Spray50Guard Twpsp251,strippunchSpray502xguard Twpsp51,stripPoly+punchSpray80No Twpsp61,strippoly+punchSpray50No Twpsp71,stripPunchSprayw/pGuard Twpspg52,strippoly+punchSpray80 w/pGuard Twpspg61,strippoly+punchSpray50 w/pGuard Technology variations in detail (III) Detectors and test structures on the wafers

12 J.M. Heuser − STS Development 1.The designed poly resistors has 230 squares, the sheet resist should be 4.3k  /Sq by 1M  and 6.5k  /Sq by 1.5M . 2.For Test wafer we need only two masks. 3.Flow card for poly-resist test: Processing steps: LTO deposition Poly-Silicon deposition Oxidation. Implantation Boron variations Removing of oxid Photolithography and patterning Aluminium 1µm Photolithography and patterning Polysilicon bias structures  New at CIS.

13 J.M. Heuser − STS Development L. Long, CiS Erfurt, Requirement of n-XYTER front end to the inter strip capacitance of the CBM01 detector: It seems that Ctotal (Ccable + Cint_detector+ Cin_n-XYTER) ~< 30pF. Cint = capacitance of one strip against the two neighbour strips connected together, at frequency 10kHz and 100kHz. Rint = resistance of one strip against the two neighbour strips connected together. Both of them are tested at full depletion condition. Comparison between CBM01 and ALICE microstrip detector: Length [µm] Pitch [µm] Width [µm] Cint [pF] Rint [G  ] ALICE CBM Interstrip capacitance of the CBM01 detector

14 J.M. Heuser − STS Development Electrical simulations, r/o cable Cij Simple model: Five strip lines are considered. Middle strip 1V, all other strips 0V. Inter-strip capacitance: 2 × 0.4 = 0.8 pF/cm.  noise load for FE electronics. (L. Long, CIS)

15 J.M. Heuser − STS Development Signal-to-noise in a detector system Cable: ~0.8 pF/cm Sensor: typically 1.5 pF/cm strip n-XYTER: ENC26.9 e/pF e (fast channel) 12.7 e/pF e (slow channel) Signal in 280 µm Si:80 e/µm × 280 µm = e Let‘s assume an average detector module: 6cm strip + 30 cm cable: C interstrip = 35 pF → n-XYTER will see 35 pF = 1100 e S/N ( e) = 20 S/N ( e, charge shared by 2 strips) = 10 on the edge ? Simple exercise: (J. Heuser)

16 J.M. Heuser − STS Development Cooperation GSI-CiS on microstrip detector development and production for CBM is very effective. First detector prototypes CBM01 have been fabricated in 2007 after an intensive, innovative preparation phase in Extremely useful now for STS prototyping. Many teams depend on these detectors for the R&D tasks. Currently under production: "Technology wafer" for improved next version of the CBM microstrip detectors. Prime target: Radiation hardness. Next full detector design: Will probably take some time, first need evaluation from 1 st wafer and from "technology" wafer, CBM needs to specify its further requirements. Next project with CiS involvement: Single-sided strip detectors? Summary/Outlook

17 J.M. Heuser − STS Development ALICE & ATLAS industry awards to CiS CIS has been subcontractor of Canberra for the ALICE microstrip detectors. Cern made the specification, Canberra made the design, CiS made the whole processing. In 2006, the ALICE detectors from CiS received an award from CERN (through CANBERRA).