Lyman-  quasar spectra as cosmological probes MATTEO VIEL INAF & INFN – Trieste.

Slides:



Advertisements
Similar presentations
Observational constraints and cosmological parameters
Advertisements

Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Tom Theuns Institute for Computational Cosmology, Durham, UK Department of Physics, Antwerp, Belgium Munich 2005 Reionization And the thermal history of.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
1 Cosmological Constraints on Active and Sterile Neutrinos Matteo Viel INAF/OATS & INFN/TS From Majorana to LHC: Workshop on the Origin of Neutrino Mass.
1 A VIEW ON THE MATTER POWER AT MEDIUM SCALES MATTEO VIEL INAF and INFN Trieste COSMOCOMP Trieste – 7 th September 2012.
The Physics of Large Scale Structure and New Results from the Sloan Digital Sky Survey Beth Reid ICC Barcelona arXiv: arXiv: * Colloborators:
NEUTRINO PHYSICS FROM PRECISION COSMOLOGY STEEN HANNESTAD 17 AUGUST 2010 – UNIVERSENET, COPENHAGEN e    
A hot topic: the 21cm line II Benedetta Ciardi MPA.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Galaxy and Mass Power Spectra Shaun Cole ICC, University of Durham Main Contributors: Ariel Sanchez (Cordoba) Steve Wilkins (Cambridge) Imperial College.
Non-linear matter power spectrum to 1% accuracy between dynamical dark energy models Matt Francis University of Sydney Geraint Lewis (University of Sydney)
Upper limits on neutrino masses from cosmology: new results Øystein Elgarøy (Institute of theoretical astrophysics, University of Oslo) Collaborator: Ofer.
Theoretical work on Cosmology and Structure Formation Massimo Ricotti.
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
COSMOLOGICAL SPECTROSCOPY OF THE HIGH REDSHIFT UNIVERSE: STATUS & PERSPECTIVES MATTEO VIEL INAF & INFN – Trieste HEIDELBERG JOINT ASTRONOMICAL COLLOQUIUM.
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
Probing inflation, dark matter, dark energy, etc. using the Lyman-  forest Pat McDonald (CITA) Collaborators: Uros Seljak, Anze Slosar, Alexey Makarov,
Neutrinos and the large scale structure
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
The Current State of Observational Cosmology JPO: Cochin(05/01/04)
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
The dark universe SFB – Transregio Bonn – Munich - Heidelberg.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
Mário Santos1 EoR / 21cm simulations 4 th SKADS Workshop, Lisbon, 2-3 October 2008 Epoch of Reionization / 21cm simulations Mário Santos CENTRA - IST.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
Probing cosmic structure formation in the wavelet representation Li-Zhi Fang University of Arizona IPAM, November 10, 2004.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
1 Astroparticle Physics in Intergalactic Space Matteo Viel – INAF Trieste APP14 – Amsterdam, 24 th June 2014.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Small scale modifications to the power spectrum and 21 cm observations Kathryn Zurek University of Wisconsin, Madison.
Massive Neutrinos and Cosmology Ofer Lahav University College London * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from redshift.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
MATTEO VIEL STRUCTURE FORMATION INAF and INFN Trieste (Italy) SISSA – 8 th and 11 th March 2011 Lecture 3.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Cheng Zhao Supervisor: Charling Tao
FUSE and HST Observations of Helium II Absorption in the IGM: Implications for Seeing HI Re-ionization Gerard Kriss STScI.
Cosmological Structure with the Lyman Alpha Forest. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona, Catalonia Edinburgh,
Michael Murphy Elisa Boera Collaborators: Supervisor : G. Becker J. Bolton.
Summary Neta A. Bahcall Princeton University
Sterile Neutrinos and WDM
Cosmology With The Lyα Forest
Martin Haehnelt, Matteo Viel, Volker Springel
Neutrino Masses in Cosmology
GGI, Florence, 14 September 2006 Julien Lesgourgues (LAPTH, Annecy)
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Presentation transcript:

Lyman-  quasar spectra as cosmological probes MATTEO VIEL INAF & INFN – Trieste

80 % of the baryons at z=3 are in the Lyman-  forest baryons as tracer of the dark matter density field  IGM ~  DM at scales larger than the Jeans length ~ 1 com Mpc flux = exp(-  ~ exp(-(  IGM ) 1.6 T -0.7 ) THEORY: GAS in a  CDM universe Bi & Davidsen (1997), Rauch (1998)

DATA: high resolution spectrum

Outline - Where we were - What data we got - How we used them - What we achieved - Where we are going Mini historical background The data sets Theoretical framework Results Perspectives

Linear matter power spectrum Mini historical background 1965: Bahcall & Salpeter, Gunn & Peterson. First extimates of IGM opacity. HI in clusters? 1971: A forest of lines seen by Lynds 80’s: models of the IGM (gravitational or pressure confinements of clouds) 90’s: CDM + median fluctuated IGM (Bi, McGill…) semianalytical models + Hydro sim. Croft, Weinberg and co-workers (98,99,02): the effective bias method P F (k) = b 2 (k) P(k) 28% uncertainty in the power spectrum amplitude Recovered in velocity space

GOAL: the primordial dark matter power spectrum from the observed flux spectrum Tegmark & Zaldarriaga 2002 CMB physics z = 1100 dynamics Ly  physics z < 6 dynamics + termodynamics CMB + Lyman  Long lever arm Constrain spectral index and shape Relation: P FLUX (k) - P MATTER (k) ?? Continuum fitting Temperature, metals, noise

The data sets The Croft et al. (02) sample: 53 QSO spectra (30 at high res from Keck and 23 low.res) Tytler et al. (04): 77 low resolution low S/N spectra (KAST spectrograph) at =1.9 The LUQAS sample: Large Uves Quasar Absorption Spectra part of the ESO Large programme by J. Bergeron – 27 high.res and high S/N spectra at = Kim et al. (2004) The SDSS QSOs (release 1&2): 3300 low. resolution and low S/N QSO spectra z= McDonald et al. (2005) Becker et al. (07) sample: 55 high.res. Spectra spanning z=2-6.4 There is a lot of astrophysics (reionization, metal enrichment, UV background etc.) as well…

3035 LOW RESOLUTION LOW S/N vs 30 HIGH RESOLUTION HIGH S/N SDSSLUQAS SDSS vs LUQAS McDonald et al Kim, MV et al The data sets-II

The data sets: the flux power -III Main systematics: continuum fitting + metal contamination + mean flux level determination McDonald et al. 05 SDSS Viel, Hahnelt & Springel 04 z=2.2 z=4.2 Viel et al. 08

The interpretation: bias method - I 1.LUQAS sample analysed with the effective bias method Viel, Haehnelt & Springel 04 DERIVED LINEAR DARK MATTER POWER SPECTRUM z=2.125 z=2.72  2 likelihood code distributed with COSMOMC

2. SDSS power analysed by forward modelling motivated by the huge amount of data with small statistical errors + CMB: Spergel et al. (05) Galaxy P(k): Sanchez & Cole (07) Flux Power: McDonald (05) Cosmological parameters + e.g. bias + Parameters describing IGM physics 132 data points The interpretation: full grid of sims - II

- Cosmology - Mean flux - T=T 0 (1+  )  -1 - Reionization - Metals - Noise - Resolution - Damped Systems - Physics - UV background - Small scales Tens of thousands of models Monte Carlo Markov Chains McDonald et al. 05 The interpretation: full grid of sims - IIb

McDonald et al. 05: fine grid of (calibrated) HPM (quick) simulations Viel & Haehnelt 06: interpolate sparse grid of full hydrodynamical (slow) simulations Both methods have drawbacks and advantages: 1- McDonald et al. 05 better sample the parameter space 2- Viel & Haehnelt 06 rely on hydro simulations, but probably error bars are underestimated The flux power spectrum is a smooth function of k and z P F (k, z; p) = P F (k, z; p 0 ) +   i=1,N  P F (k, z; p i ) (p i - p i 0 )  p i p = p 0 Best fit Flux power p: astrophysical and cosmological parameters but even resolution and/or box size effects if you want to save CPU time The interpretation: flux derivatives - III 3. Independent analysis of SDSS power

RESULTS POWER SPECTRUM AND NEUTRINOS

Results Lyman-  only with full grid: amplitude and slope McDonald et al. 05 Croft et al. 98,02 40% uncertainty Croft et al % uncertainty Viel et al % uncertainty McDonald et al % uncertainty  2 likelihood code distributed with COSMOMC

SDSS data only  8 = 0.91 ± 0.07 n = 0.97 ± 0.04 Fitting SDSS data with GADGET-2 this is SDSS Ly-  only !! FLUX DERIVATIVES Results Lyman-  only with flux derivatives: correlations

Summary (highlights) of results 1.Tightest constraints to date on neutrino masses and running of the spectral index Seljak, Slosar, McDonald JCAP (2006) Tightest constraints to date on the coldness of cold dark matter MV et al., Phys.Rev.Lett. 100 (2008)

Lesgourgues, MV, Haehnelt, Massey, 2007, JCAP, 8, 11 VHS-LUQAS: high res Ly-a from (Viel, Haehnelt, Springel 2004) SDSS-d: re-analysis of low res data SDSS (Viel & Haehnelt 2006) WL: COSMOS-3D survey Weak Lensing (Massey et al. 2007) 1.64 sq degree public available weak lensing COSMOMC module Lyman-  forest + Weak Lensing + WMAP 3yrs VHS+WMAP1 AMPLITUDE SPECTRAL INDEXMATTER DENSITY

Lesgourgues, MV, Haehnelt, Massey, 2007, JCAP, 8, 11 Lyman-  forest + Weak Lensing + WMAP 3yrs WMAP5only Dunkley et al. 08  8 = ± n s = ±  m = ± h = 71.9 ± 2.7  = ± dn/dlnk= ± WMAP5+BAO+SN Komatsu et al. 08  8 = ± n s = ± h = 70.1 ± 1.3  = ± with Lyman-  factor 2 improvements on the running |dn/dlnk| < WMAP 5yrs

Lesgourgues & Pastor Phys.Rept. 2006, 429, 307 Lyman-   forest  m = eV  m  = 1.38 eV Active neutrinos - I

Active neutrinos - II Seljak, Slosar, McDonald, 2006, JCAP, 0610, 014  m (eV) < 0.17 (95 %C.L.) r < 0.22 (95 % C.L.) running = ± Neff = 5.2 (3.2 without Ly  ) CMB + SN + SDSS gal+ SDSS Ly-  normal inverted ,2 3 Goobar et al. 06 get upper limits 2-3 times larger…… for forecasting see Gratton, Lewis, Efstathiou 2007 Tight constraints because data are marginally compatible 2  limit

RESULTS WARM DARK MATTER Or if you prefer.. How cold is cold dark matter?

Lyman-  and Warm Dark Matter - I  CDM WDM 0.5 keV 30 comoving Mpc/h z=3 MV, Lesgourgues, Haehnelt, Matarrese, Riotto, PRD, 2005, 71, k FS ~ 5 T v /T x (m x /1keV) Mpc -1 In general Set by relativistic degrees of freedom at decoupling See Colombi, Dodelson, Widrow, 1996 Colin, Avila-Reese, Valenzuela 2000 Bode, Ostriker, Turok 2001 Abazajian, Fuller, Patel 2001 Wang & White 2007 Colin, Avila-Reese, Valenzuela 2008

Lyman-  and Warm Dark Matter - II  CDM MV, Lesgourgues, Haehnelt, Matarrese, Riotto, PRD, 2005, 71, [P (k) WDM /P (k) CDM ] 1/2 P(k) = A k n T 2 (k) T x = T g (T D ) 1/3 Light gravitino contributing to a fraction of dark matter Warm dark matter 10 eV 100 eV

MV et al., Phys.Rev.Lett. 100 (2008) Tightest constraints on mass of WDM particles to date: m WDM > 4 keV (early decoupled thermal relics) m sterile > 28 keV (standard Dodelson- Widrow mechanism) SDSS + HIRES data (SDSS still very constraining!) SDSS range Completely new small scale regime Lyman-  and Warm Dark Matter - III

COLD (a bit) WARM sterile 10 keV Little room for standard warm dark matter scenarios…… … the cosmic web is likely to be quite “cold”

NEW RESULTS for SIMPLER STATISTICS ?

Fitting the flux probability distribution function Bolton, MV, Kim, Haehnelt, Carswell (08) T=T 0 (1+  )  -1 Flux probability distribution function Inverted equation of state  <1 means voids are hotter than mean density regions

Fitting the flux probability distribution function-II Bolton, MV, Kim, Haehnelt, Carswell (08)

SUMMARY - Lyman-  forest is an important cosmological probe at a unique range of scales and redshifts - Current limitations are theoretical (more reliable simulations are needed for example for neutrino species) and statistical errors are smaller than systematic ones - Need to fit all the IGM statistics at once (mean flux + flux pdf + flux power + flux bispectrum + … ) -Tension with the CMB is partly lifted (  8 went a bit up). Still very constraining for what happens at those scales: running (inflation), neutrinos, warm dark matter candidates …

SYSTEMATICS

Systematics I: Mean flux Effective optical depth = exp (-  eff ) Power spectrum of F/ Low resolution SDSS like spectra High resolution UVES like spectra

Systematics II: Thermal state T = T 0 ( 1 +  )  Statistical SDSS errors on flux power Thermal histories Flux power fractional differences

Gnedin & Hui 1998 equation of motion for gas element if T = T 0 ( 1 +  )  Other similar techniques agree with the statement above Meiksin & White 2001 Systematics III: Numerical modelling HPM simulations

Systematics IV: Numerical modelling HPM simulations Full hydro 200^3 part. HPM NGRID=600 HPM NGRID=400 FLUX POWER MV, Haehnelt, Springel (2006)

UV fluctuations from Lyman Break Galaxies Metal contribution Systematics V: UV fluctuations and Metals McDonald, Seljak, Cen, Ostriker 2004 Kim, MV, Haehnelt, Carswell, Cristiani (2004) Ratio of Flux power

m WDM > 550 eV thermal > 2keV sterile neutrino WDM  CWDM (gravitinos) neutrinos Lyman-  and Warm Dark Matter - IV Viel et al. (2005)from high-res z=2.1 sample Seljak, Makarov, McDonald, Trac, PhysRevLett, 2006, 97, m WDM > keV thermal > keV sterile neutrino MATTER FLUX FLUX MV, Lesgourgues, Haehnelt, Matarrese, Riotto, PhysRevLett, 2006, 97,

Active neutrinos -II  m (eV) < 1 eV (95 % C.L.) WMAP1 + 2dF + LY   WDM neutrinos Good agreement with the latest Tegmark et al. results…..

Fitting the mean flux evolution –I Faucher-Giguere et al. (07) McDonald et al. (05)

Lyman-  and Warm Dark Matter - III WDM 0.5 keV MV, Lesgourgues, Haehnelt, Matarrese, Riotto, PRD, 2005, 71, WARM DARK MATTER (light) GRAVITINO  sets the transition scale f x is  x /  DM m < 16 eV (2  )  SUSY < 260 TeV