Zeeman Spectroscopy of CaH Jinhai Chen, J. Gengler &T. C. Steimle, The 60 th International Symposium on Molecular Spectroscopy.

Slides:



Advertisements
Similar presentations
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Advertisements

An approximate H eff formalism for treating electronic and rotational energy levels in the 3d 9 manifold of nickel halide molecules Jon T. Hougen NIST.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
1 Thermally induced 4f – 5d transitions in LuAlO 3 :Ce (LuAP) A.J. Wojtowicz, S. Janus Institute of Physics, N. Copernicus Univ. Toruń, POLAND IEEE 9th.
Application of 2D fluorescence spectroscopy to Metal Containing Species Damian L. Kokkin and Timothy Steimle. Department of Chemistry and Biochemistry.
Electron Paramagnetic Resonance at Hunter College
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
MODERATE RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE OF NO 3 RADICAL Terrance J. Codd, Ming-Wei Chen, Mourad Roudjane and Terry A.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Anh T. Le and Timothy C. Steimle The electric dipole moment of Iridium monosilicide, IrSi Department of Chemistry and Biochemistry, Arizona State University,
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Effect of Thin Coatings on Surface Plasmon-Enhanced Infrared Spectroscopy using Ni Mesh Microarrays Kenneth R. Rodriguez, Shannon Teeters- Kennedy, Hong.
Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
THE ZEEMAN EFFECT IN THE OPTICAL SPECTRUM OF MANGANESE MONOHYDRIDE: MnH. Jamie Gengler and Timothy C. Steimle Department of Chemistry and Biochemistry.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
The 66 th International Symposium on Molecular Spectroscopy, June 2010 Fang Wang,Anh Lee and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Adam J. Fleisher Justin W. Young David W. Pratt Department of Chemistry University of Pittsburgh Internal dynamics of water attached to a photoacidic substrate:
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
1 Zeeman patterns in FT resolved fluorescence spectra of NiH Amanda Ross, Patrick Crozet, Heather Harker and Cyril Richard Laboratoire de Spectrométrie.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
The 67 th International Symposium on Molecular Spectroscopy, June 2012 Ruohan Zhang, Chengbing Qin a and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
ENERGY LEVELS OF THE NITRATE RADICAL BELOW 2000 CM -1 Christopher S. Simmons, Takatoshi Ichino and John F. Stanton Molecular Spectroscopy Symposium, June.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
A Laser-induced Fluorescence Spectroscopy Study of Rhodium Monosulfide Runhua Li and Walter J. Balfour Department of Chemistry, University of Victoria.
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY OF CYCLOHEXOXY
HYPERFINE INTERACTION IN DIATOMICS AS A TOOL FOR VERIFICATION OF THEORETICAL VALUES FOR THE EFFECTIVE ELECTRIC FIELD ON ELECTRON A.N.Petrov PNPI QChem.
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
Reinvestigation of The Emission Spectra Following the 266 nm Photolysis of Iodomethanes Cian-Ping Tu, Hsin-I Cheng, and Bor-Chen Chang Department of Chemistry.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
STARK AND ZEEMAN EFFECT STUDY OF THE [18.6]3.5 – X(1)4.5 BAND OF URANIUM MONOFLUORIDE, UF COLAN LINTON, ALLAN G. ADAM University of New Brunswick TIMOTHY.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
63rd International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2008 The Permanent Electric Dipole Moment of Cerium and Praesodymium Monoxides,
Magnetic g e -factors and electric dipole moments of Lanthanide monoxides: PrO * Hailing Wang, and Timothy C. Steimle Department of Chemistry and Biochemistry.
Funded by: NSF-Exp. Timothy C. Steimle Hailing Wang & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The A 2  -X 2  + Band System.
The optical spectrum of SrOH revisited: Zeeman effect, high- resolution spectroscopy and Franck- Condon factors TRUNG NGUYEN, DAMIAN L KOKKIN, TIMOTHY.
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
The 69 th International Symposium on Molecular Spectroscopy, June 2014 U. Illinois Champagne-Urbanna, Timothy C. Steimle, Hailing Wang a and Ruohan Zhang.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
*Funded by: DoE-BES Xiujuan Zhuang, Timothy C. Steimle & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA* The Visible Spectrum of.
JET-COOLED LASER-INDUCED FLUORESCENCE SPECTROSCOPY OF LARGE SECONDARY ALKOXY RADICALS 06/21/10 JINJUN LIU, MING-WEI CHEN, AND TERRY A. MILLER Laser Spectroscopy.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
Funded by: NSF-Exp. Tongmei Ma & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Optical Zeeman Spectroscopy of ytterbium.
62nd International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2007 The Permanent Electric Dipole Moment and Magnetic g-factors of Neodymium.
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Zeeman effect HFS and isotope shift
Timothy C. Steimle , T. Maa, S. Muscarella, and Damian Kokkin
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Spectroscopic Research of Pt + NH3
Optical Zeeman Spectroscopy of Calcium Fluoride, CaF
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
High-resolution Laser Spectroscopy
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

Zeeman Spectroscopy of CaH Jinhai Chen, J. Gengler &T. C. Steimle, The 60 th International Symposium on Molecular Spectroscopy

Interpretation: gaining magnetic moment from A 2  state Observation: X 2  g s =2.0023; g l = ) Matrix isolated Electron spin resonance Knight& Weltner, J. Chem. Phys. 54, 3875 (1971) 3) Magnetic trapping analysis Friedrich et al J. Chem. Phys. 110, 2376 (1999) Observation: R 1 (0.5) (0,0)B 2  X 2  line from 0-26kG Observation: “anomalous” Zeeman splitting in (0,0)B 2  X 2  Interpretation: interaction with J=1.5,A 2   (v=1)  level

J=1.5,A 2  3/2 (v=1) N=1,J=1.5 B 2  + (v=0) Doyle’s group model (JCP 110, 2376 (1999) N=0,J=0.5 X 2  + (v=0) R 1 (0.5) =0.40 Too large; Unrealistic !! H Zee = m  B with m L = -  B g L L, m S = -  B g S S

Goal of present study Model and interpret the Zeeman splitting in all transitions of the (0,0)B 2  X 2  and (0,0) A 2  -X 2  bands g l = H Zee(Eff) = -  B B z (g L L+g S S) +g l [S x B x +S y B y ] +g l ’[e -2i  S + B + +e -2i  S - B - ]

High-resolution spectrometer Electromagnet Optical Zeeman Spectroscopy

Electromagnet for Zeeman spectroscopy (0G-2.5kG) Mirror

Zeeman effect: S R 21 (0.5) (0,0) A 2  3/2 - X 2  + with g l & g l ’ without g l & g l ’ (v=0)A 2  3/2 (v=0)X 2 

Zeeman effect:R 1 (0.5) (0,0) A 2  1/2 - X 2  + with g l & g l ’ without g l & g l ’ (v=0)A 2  1/2 (v=0)X 2  A B C D

Low-resolution LIF B 2  + (v=0)/A 2  r (v=1) X 2  + (v=0) (viewed through a 640 nm bandpass filter) Next slide * * * *=measured

R 1 (0.5) LIF B 2  + (v=0)/A 2  r (v=1) X 2  + (v=0) Feature used by Doyle et al for magnetic field measurements (640 nm bandpass filter)

Zeeman effect:R 1 (0.5) (0,0) B 2  - X 2  + with interaction without interaction A B CD

This splitting used to measure field in mag. trap

Modeling the field free A 2  r (v=1)/B 2  + (v=0) -X 2  + band Generate “supermatrix” representation – Use effective hamiltonian for  v=0 interactions: B 2  + terms (4x4) : H eff ( 2  + ) = BN 2 - DN 4 +  NS + b F IS + c(I z S z -IS) A 2  (v=0) terms (8x8 matrix): H eff ( 2  ) =T v + AL z S z + ½A D [N 2 L z S z + L z S z N 2 ] + BN 2 -D(N 2 ) 2 + ½(p+2q)(e -2i J + S + + e +2i J - S - ) -½q(e -2i + e 2i ) - use explicit terms for  v= 1 interactions: {(-1) q (A+2B)T q (L)T q (S)-2BT q (J)T q (L)} - Interaction parameters: M 1 = - M 2 =

Modeling the A 2  /B 2  + Field free interaction 12x12 Matrix

Determined “field free” parameters from A 2  r (v=1)/B 2  + (v=0) X 2  + band analysis M 2 constrained to =0 Note :  -doubling in A 2  (v=1) approximately =A 2  (v=0) & approximately =  of B 2  + (v=0) Standard deviation of the fit: cm-1.

Two adjustable parameters: g l and

Two adjustable parameters: g l and g l ’

-0.09 a b gl’gl’ glgl (v=0)A 2  Exp (4) Corr. coef (1) Model a) g l ’ = p/2B b) g l = -  /2B (lower limit) glgl (v=0)B 2   Exp. 0.22(4) Corr. coef (1) Model 0.09 a 0.16 b a) g l = -  /2B b) = x Results

Why we prefer this model over Dolye’s 1.Realistic value for 2. Works for all transitions (not just R 1 (0.5)) 3. Many internal consistencies are met: i) g l (B 2  + ) ~ -g l ’(A 2  ) ii) ~ /A etc. iii) Curl relationships give approx. correct results

Conclusions drawn from the CaH Zeeman studies 1)The Zeeman effect in the A 2  (v=1)/B 2  (v=0)- X 2  (v=0) band system can be modeled with two (one?) adjustable parameters for fields as high as those in the magnetic confinement experiments (approx. 25,000 G!) 2)Sorting out the field-free A 2  (v=1)/B 2  (v=0) interaction was crucial to the anlaysis of even the low-field Zeeman spectra.

Funding provided by NSF

Thank You !