Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.

Slides:



Advertisements
Similar presentations
Conversion and Reactor sizing
Advertisements

ERT 316: REACTION ENGINEERING CHAPTER 2 CONVERSION & REACTOR SIZING
1 - 17/04/2015 Department of Chemical Engineering Lecture 4 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Review of previous lectures  Stoichiometry.
Chemical Reaction Engineering
                                      제1장 Mole Balance Chemical Reaction Engineering 반응공학 I.
Steady State Nonisothermal Reactor Design
Conversion and Reactor Sizing
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 15.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
SABIC Chair in Catalysis at KAU Chemical Reaction Engineering Dr. Yahia Alhamed.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
ISOTHERMAL REACTOR DESIGN
A First Course on Kinetics and Reaction Engineering
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
L5-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Relate all V(  ) to XA Put together.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 31.
Mole balance for chemical reaction engineering (Design Equations for reactors) Lec 3 week 3.
L2b-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. L2b: Reactor Molar Balance Example.
Chemical Reaction Engineering Asynchronous Video Series Chapter 1: General Mole Balance Equation Applied to Batch Reactors, CSTRs, PFRs, and PBRs H. Scott.
ITK-330 Chemical Reaction Engineering
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 26.
Review: Logic of Isothermal Reactor Design
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 31.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal Reactor Design
Chemical Reaction Engineering 1 제 2 장 Conversion and Reactor Sizing 반응공학 1.
Chapter 6 Chemical Reaction Engineering Mutiple Reactions.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Isothermal reactor design
Kinetics and Reactor Design Kinetics and Reactor Design CHE-402 INSTRUCTOR: Dr. Nabeel Salim Abo-Ghander Chemical Reactions and Rate of Reactions Chapter.
Pressure drop in PBR Lec 10 week 13. Pressure Drop and the Rate Law We now focus our attention on accounting for the pressure drop in the rate law. to.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
E XERCISE 1 SOLUTION Lecturer: Miss Anis Atikah Ahmad Tel:
Reactor Design. تحت شعار العيد فرحة : الجمهور : طبعا النهاردة نص يوم علشان العيد خلص امبارح؟ أنا : لأ الجمهور : يعني النهاردة هناخد سكشن؟ أنا : ونص الجمهور.
CHE 354 Chemical Reactor Design
ChE 402: Chemical Reaction Engineering
L2b: Reactor Molar Balance Example Problems
ChE 402: Chemical Reaction Engineering
Chemical Reaction Engineering
The General Mole Balance & Ideal Reactors
CSTR in series and in parallel
Chapter Two: Conversion & Reactor Sizing
Steady-state Nonisothermal reactor Design Part I
Steady-state Nonisothermal reactor Design Part I
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Mustafa Nasser, PhD, MSc, BSc Chemical Engineering
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ISOTHERMAL REACTOR DESIGN
Chapter One: Mole Balances
Chapter One: Mole Balances
Conversion and the Design Equations
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Multiple Reactions Chapter 6.
Steady-state Nonisothermal reactor Design Part I
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Kinetics and Reactor Design
13. Reactor Engineering: Reactor Design
Presentation transcript:

Conversion and Reactor Sizing Lec 4 week 4

Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above reaction proceeds to the rightHow many moles of C are formed for every mole A consumed? Now we ask such questions as "How can we quantify how far the above reaction proceeds to the right?" or “How many moles of C are formed for every mole A consumed? conversion A convenient way to answer these questions is to define a parameter called conversion. The conversion X A is the number of moles of A that have reacted per mole of A fed to the system.

Batch Reactor Design Equations in terms of conversion in batch systems the conversion X is a function of the time the reactants spend in the reactor. If N AO is the number of moles of A initially in the reactor then the total number of moles of A that have reacted after a time t is [N A0 *X]

Batch Reactor Design Equations in terms of conversion The mole balance on species A for a batch system is given by the following equation: To write the mole balance Equation in terms of conversion. We use N A =N A0 (1-X A )

Batch Reactor Design Equations in terms of conversion by differentiating the above equation with respect to time, remembering that N Ao is the number of moles of A initially present and is therefore a constant with respect to time.

Batch Reactor Design Equations in terms of conversion To determine the time to achieve a specified conversion X This equation is now integrated with the limits that the reaction begins at time equal zero where there is no conversion initially (i.e., t = 0, X = 0). conversion increases with time spent in the reactor.

Design Equations for CSTR If F A0 is the molar flow rate of species A fed to a system operated at steady state. The molar rate at which species A is reacting within the entire system will be F A0 X.

Design Equations for CSTR

Tubular Flow Reactor (PFR) For a flow system, F A has previously been given in terms of the entering molar flow rare F A0 and the conversion X By differentiate Substitute in the 1 st equation to give the differential form of the design equation for a plug-flow reactor (PFR): We now separate the variables and integrate with the limits V = 0 when X = 0 to obtain the plug-flow reactor volume necessary to achieve a specified conversion X:

Packed-Bed Reactor

Example Consider the liquid phase reaction which we will write symbolically as – AB The first order (-r A = k C A ) reaction is carried out in a tubular reactor in which the volumetric flow rate, v, Is constant i.e. v =v 0. (a) Derive an equation relating the reactor volume to the, entering and exiting concentrations of A the rate constant k, and the volumetric flow rate v. (b) Determine the reactor volume necessary to reduce the exiting concentration to 10% of the entering concentration when the volumetric flow rate is I0(dm 3 /min) and the specific reaction rate, k. is 0.23 min -1.

Solution