111 Antimatter. Congratulations and Thanks Ron! Plasma Fusion Center, MIT Physics of Plasmas ‘95 Plasma Study.

Slides:



Advertisements
Similar presentations
Plasma Window Options and Opportunities for Inertial Fusion Applications Leslie Bromberg Ady Herskovitch* MIT Plasma Science and Fusion Center ARIES meeting.
Advertisements

What is the ISOLDE cooler RFQ CB - ISCOOL H. Frånberg.
Workshop on Beam Cooling and Related Topics COOL – 16 September 2011, Alushta, Ukraine Methods for optimization of the dynamics of positrons storage.
Ion-Induced Instability of Diocotron Modes In Magnetized Electron Columns Andrey Kabantsev University of California at San Diego Physics Department Nonneutral.
Performance of a Hybrid RF/DC Quadrupole-Linear Ion Trap Mass Spectrometer James W. Hager MDS SCIEX ASMS, 2002.
Erdem Oz* USC E-164X,E167 Collaboration Plasma Dark Current in Self-Ionized Plasma Wake Field Accelerators
Laboratory Measurement of CO 2 ( 2 ) + O Temperature-Dependent Vibrational Energy Transfer Karen J. Castle, 1 Michael Simione, 1 Eunsook S. Hwang, 2 and.
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
Rotating Wall/ Centrifugal Separation John Bollinger, NIST-Boulder Outline ● Penning-Malmberg trap – radial confinement due to angular momentum ● Methods.
Antimatter: Past, Present & Future Presentation By Paramita Barai In Course Phys 6410: Introductory Nuclear and Particle Physics Instructor: Dr. Xiaochun.
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
SuperB and the ILC Damping Rings Andy Wolski University of Liverpool/Cockcroft Institute 27 April, 2006.
Laser Magnetized Plasma Interactions for the Creation of Solid Density Warm (~200 eV) Matter M.S. R. Presura, Y. Sentoku, A. Kemp, C. Plechaty,
the equation of state of cold quark gluon plasmas
Simulations of Neutralized Drift Compression D. R. Welch, D. V. Rose Mission Research Corporation Albuquerque, NM S. S. Yu Lawrence Berkeley National.
The Australian Positron Beamline Facility The low energy beam from the moderator is fed into the trap where it cools through collisions with a buffer gas.
EBIT – Electron Beam Ion Trap
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Initial wave-field measurements in the Material Diagnostic Facility (MDF) Introduction : The Plasma Research Laboratory at the Australian National University.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
The Production of Cold Antihydrogen w. A Brief History of Antimatter In 1928, Paul Dirac proposes antimatter with his work in relativistic quantum mechanics.
An example of High Energy Density Physics at Low Energy Densities
Ultra-thin Gas Jet for Non-Invasive Beam Halo Measurement Adam Jeff CERN & University of Liverpool Workshop on Beam Halo Monitoring 19th September 2014.
Dusty Plasmas in the Laboratory and Space Bob Merlino April 2003 APS Meeting Philadelphia, PA.
Cryogenic ion catchers using superfluid helium and noble gases Sivaji Purushothaman KVI, University of Groningen The Netherlands.
International Symposium on Heavy Ion Inertial Fusion June 2004 Plasma Physics Laboratory, Princeton University “Stopping.
FLAR project S.L. Yakovenko JINR, Dubna,Russia. 2 Contents 1.FlAIR project 2.AD facility at CERN 3.Antyhydrogen and Positronium in-flight at FLAIR 4.LEPTA.
Reconnection rates in Hall MHD and Collisionless plasmas
Electron String Phenomenon: Physics and Applications by E. D. Donets, S. V. Gudkov, D. E. Donets, E. E. Donets, A. D. Kovalenko, S. V. Salnikov, V. B.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
J. Hasegawa, S. Hirai, H. Kita, Y. Oguri, M. Ogawa RLNR, TIT
The Magneto-Rotational Instability and turbulent angular momentum transport Fausto Cattaneo Paul Fischer Aleksandr Obabko.
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
1 US PFC Meeting, UCLA, August 3-6, 2010 DIONISOS: Upgrading to the high temperature regime G.M. Wright, K. Woller, R. Sullivan, H. Barnard, P. Stahle,
Waves in a 2D Dusty Plasma Crystal
The Heavy Ion Fusion Science Virtual National Laboratory The collective effects on focusing of intense ion beams in neutralized drift compression I. D.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Collective Focusing of a Neutralized Intense Ion Beam Propagating Along a Weak Solenodial Magnetic Field M. Dorf (LLNL) In collaboration with I. Kaganovich,
PROPERTIES OF UNIPOLAR DC-PULSED MICROPLASMA ARRAYS AT INTERMEDIATE PRESSURES* Peng Tian a), Chenhui Qu a) and Mark J. Kushner a) a) University of Michigan,
Mathematical Descriptions of Axially Varying Penning Traps Stephanie Brown.
Non-Neutral Plasma Physics and Antihydrogen Joel Fajans U.C. Berkeley and the ALPHA Collaboration G. Andresen, W. Bertsche, A. Boston, P. D. Bowe, C. L.
SEMINAR ON ANTIMATTER. INTRODUCTION Antimatter is real. Energy density of chemical reaction is 1×10  J/kg. nuclear fission is 8×10  J/kg. nuclear fusion.
Scaling Gas-filled Muon Ring Coolers Al Garren, UCLA Ringcooler Mini-workshop Tucson, December 15-16, 2003.
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
LEPTA: Low Energy Particle Toroidal Accumulator Presented by: Mkhatshwa S. L. Nkabi N. Loqo T. Mbebe N. Supervisor: A. Sidorin SA STUDENT PRACTICE 2010.
Switching with Ultrafast Magnetic Field Pulses Ioan Tudosa.
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
Merritt Moore Physics 95, 2009 T R A P P E D ANTIPARTICLES.
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
PS-ESS and LEBT State of the art Lorenzo Neri Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
Overview of low energy positron physics and applications
Ялта Конференция Yalta-, Univ. of Tokyo, Ryo FUNAKOSHI Univ. of Tokyo Ryo FUNAKOSHI ATHENA collaboration ATHENA: a High Performance detector for.
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
Overview Lecture 2 Trapping antiprotons Antihydrogen ATHENA and ATRAP
Tunable Electron Bunch Train Generation at Tsinghua University
Siara Fabbri University of Manchester
Low Energy Positron Toroidal Accumulator
High Efficiency X-band Klystron Design Study
Angela Gligorova on behalf of the AEgIS and Medipix collaborations
An Anticyclotron For Cooling Muons
V.P. Nagorny, V.N. Khudik Plasma Dynamics Corporation, USA
Electron Acoustic Waves in Pure Ion Plasmas F. Anderegg C. F
Update on ERL Cooler Design Studies
Presentation transcript:

111 Antimatter

Congratulations and Thanks Ron! Plasma Fusion Center, MIT Physics of Plasmas ‘95 Plasma Study

New Tools for Antimatter Studies  Positron Plasmas and Trap-Based Beams* Cliff Surko James Danielson Toby Weber Tom O’Neil Mike Anderson * Supported by NSF, DOE/NSF Partnership

Antimatter in our world of Matter Plasma Physics  enabling the study and use low-energy antimatter PET scan Fast electronics Electron-positron Plasmas Antihydrogen e+e+ p Galactic center

The real reason we are making antihydrogen... But the real reason we’re making antimatter … NO!

Why Trap and Cool Antimatter?  Isolate interactions with matter  Atomic/molecular physics  Laboratory astrophysics  Density dependent processes  Pulsed, bright beams (e.g., plasma diagnostics, materials analysis)  Antihydrogen production  Electron-positron plasmas  BEC positronium e+e+

A Near-Perfect “Antimatter Bottle” The Penning-Malmberg Trap Angular Momentum No torques L z = is constant No expansion! Single-component plasma B V V (Malmberg & deGrassie ‘75; O’Neil ‘80) John Malmberg E x B plasma rotation f E = cne/B

Buffer-Gas Positron Trap  Trap using a N 2 -CF 4 gas mixture  Positrons cool to 300K (25meV) in ~ 0.1s Surko PRL ‘88; Murphy, PR ‘92 30% trapping efficiency

Buffer-gas Accumulator Positron plasmaGas in Positrons in (flux ~ 1 pA) Cryopumps 1.8 m

Trapping Antimatter Goals Long-term storage High capacity Cold, dense plasmas Portable antimatter traps Considerations Space charge: 10 kV  ~ e + /cm* Confinement at high plasma densities? Cooling  cool ~ tesla * cylindrical plasma

Improve vacuum Improve B-field Computerized optimization Improved trap Stacking ATHENA Solid neon moderator Year trapped positrons UCSD Multicell 1x10 12 Overview of Positron Trapping

Increase positron storage capacity Plasma compression for lifetime and density control Extraction of finely focused beams New Tools for Antimatter Physics

End View D RF Electrodes DC Electrode 2R p LpLp L Side View Positron Plasma Multicell Trap for Large N tot * Many “beaded rods” in parallel Design Parameters B = 5T n ~ 3x10 10 cm -3 L p ~ 5 cm R p ~ 0.14 cm T ~ 2 eV N tot ~ (1 cell)  c ~ 1 kV Total number of cells ~ 100 N tot ~ *Surko and Greaves, Radiation Physics and Chemistry (2003) B

master cell 2 banks of 19 storage cells Multicell Positron Trap Electrodes e+e+ Danielson, Phys. Plasmas (2006)

Autoresonant Diocotron-mode Excitation to Position Azimuthal Radial Danielson, Phys. Plasmas (2006) D/R w ≥ 0.8 f D = f Do [1 - (D/R w ) 2 ] -1

“Rotating-Wall” Compression of Positron Plasmas Compress radially using a rotating electric field. Good coupling over broad range of frequencies. Applications: - ‘infinite’ confinement times - increase plasma density - create bright antiparticle beams (Huang, et al., Anderegg, et al., Hollmann, et al., ‘95 - ‘00) Greaves and Surko, PRL (2000).Greaves and Surko, PRL (2000). Radial density profiles from CCD images:* B

weak- drive strong- drive Transition Region Transition/bifurcation _________________________________________________ Danielson PRL (05); Phys. Pl. (06) electron plasma f E  f RW

Hysteretic Behavior in f RW Characteristic of the Strong Drive Regime Strong Drive Regime - above a critical V RW, f E f RW Zero Frequency Mode

Zero-Frequency-Mode (ZFM) Drag is Key to the Dynamics Dependence on f RW drive drag ZFM drag ZFM Danielson, O’Neil, Surko, PRL, submitted

RW Compression in the Strong Drive Regime Good physical model of transitions, upper and lower fixed points. Now explore limits, high densities and low temperatures for applications

Brightness Enhancement Using Traps Rotating wall compressed plasma Slow release creates beam narrower than plasma RW and inward transport fill “hole” created by positron release Danielson, APL (2007)

Beam Extraction Small-beam limit: Plasma electron plasma (10  s pulses)

Beam Widths vs N b /N.... __ numerical calc. “Small beam” when:  b /T = e 2 N b /L p T< 1

What’s Next  Some Near-term Goals Explore the density limits of RW compression Create a 1 meV positron beam Develop a multicell trap Long-term challenge: a portable antimatter trap

For references see: e+e+