J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale Structure inference.

Slides:



Advertisements
Similar presentations
Dark energy workshop Copenhagen Aug Why the SNLS ? Questions to be addressed: -Can the intrinsic scatter in the Hubble diagram be further reduced?
Advertisements

Bayesian Estimation in MARK
Efficient Cosmological Parameter Estimation with Hamiltonian Monte Carlo Amir Hajian Amir Hajian Cosmo06 – September 25, 2006 Astro-ph/
TNO orbit computation: analysing the observed population Jenni Virtanen Observatory, University of Helsinki Workshop on Transneptunian objects - Dynamical.
Important slides (Cosmological group at KASI)
Observational tests of an inhomogeneous cosmology by Christoph Saulder in collaboration with Steffen Mieske & Werner Zeilinger.
Galaxy and Mass Power Spectra Shaun Cole ICC, University of Durham Main Contributors: Ariel Sanchez (Cordoba) Steve Wilkins (Cambridge) Imperial College.
Non-linear matter power spectrum to 1% accuracy between dynamical dark energy models Matt Francis University of Sydney Geraint Lewis (University of Sydney)
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
Cosmological Information Ue-Li Pen Tingting Lu Olivier Dore.
Bayesian Analysis of X-ray Luminosity Functions A. Ptak (JHU) Abstract Often only a relatively small number of sources of a given class are detected in.
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
AGN and Quasar Clustering at z= : Results from the DEEP2 + AEGIS Surveys Alison Coil Hubble Fellow University of Arizona Chandra Science Workshop.
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
Particle filters (continued…). Recall Particle filters –Track state sequence x i given the measurements ( y 0, y 1, …., y i ) –Non-linear dynamics –Non-linear.
Mapping with Probability – The Fortunate Isles Anthony Smith, Andrew Hopkins, Dick Hunstead.
The spatial clustering of X-ray selected AGN R. Gilli Istituto Nazionale di Astrofisica (INAF) Osservatorio Astronomico di Bologna On behalf of the CDFS.
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
Nikos Nikoloudakis and T.Shanks, R.Sharples 9 th Hellenic Astronomical Conference Athens, Greece September 20-24, 2009.
Modeling the 3-point correlation function Felipe Marin Department of Astronomy & Astrophysics University of Chicago arXiv: Felipe Marin Department.
Angular clustering and halo occupation properties of COSMOS galaxies Cristiano Porciani.
박창범 ( 고등과학원 ) & 김주한 ( 경희대학교 ), J. R. Gott (Princeton, USA), J. Dubinski (CITA, Canada) 한국계산과학공학회 창립학술대회 Cosmological N-Body Simulation of Cosmic.
Survey Science Group Workshop 박명구, 한두환 ( 경북대 )
30/6/09 Unity of the Universe 1. Michael Drinkwater for the team Australia: Blake, Brough, Colless, Couch, Croom, Davis, Glazebrook, Jelliffe, Jurek,
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni Martin Kilbinger Andisheh Mahdavi.
Robust cosmological constraints from SDSS-III/BOSS galaxy clustering Chia-Hsun Chuang (Albert) IFT- CSIC/UAM, Spain.
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
Cosmic Structures: Challenges for Astro-Statistics Ofer Lahav Department of Physics and Astronomy University College London * Data compression – e.g. P(k)
Constraining the Dark Side of the Universe J AIYUL Y OO D EPARTMENT OF A STRONOMY, T HE O HIO S TATE U NIVERSITY Berkeley Cosmology Group, U. C. Berkeley,
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Dark Energy Probes with DES (focus on cosmology) Seokcheon Lee (KIAS) Feb Section : Survey Science III.
Measuring dark energy from galaxy surveys Carlton Baugh Durham University London 21 st March 2012.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Cosmological Constraints from the maxBCG Cluster Sample Eduardo Rozo October 12, 2006 In collaboration with: Risa Wechsler, Benjamin Koester, Timothy McKay,
David Weinberg, Ohio State University Dept. of Astronomy and CCAPP The Cosmological Content of Galaxy Redshift Surveys or Why are FoMs all over the map?
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White.
Cosmic Inhomogeneities and Accelerating Expansion Ho Le Tuan Anh National University of Singapore PAQFT Nov 2008.
Large-Scale Structure & Surveys Max Tegmark, MIT.
23 Sep The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun Peking Univ./ CPPM.
Zheng I N S T I T U T E for ADVANCED STUDY Cosmology and Structure Formation KIAS Sep. 21, 2006.
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
Xiaohu Yang (SJTU/SHAO) With: H. Wang, H.J. Mo, Y.P. Jing, F.C van den Bosch, W.P. Lin, D. Tweed… , KIAS Exploring the Local Universe with re-
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Cosmology with Large Optical Cluster Surveys Eduardo Rozo Einstein Fellow University of Chicago Rencontres de Moriond March 14, 2010.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
Luminous Red Galaxies in the SDSS Daniel Eisenstein ( University of Arizona) with Blanton, Hogg, Nichol, Tegmark, Wake, Zehavi, Zheng, and the rest of.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
The dependence on redshift of quasar black hole masses from the SLOAN survey R. Decarli Università dell’Insubria, Como, Italy A. Treves Università dell’Insubria,
Feasibility of detecting dark energy using bispectrum Yipeng Jing Shanghai Astronomical Observatory Hong Guo and YPJ, in preparation.
Carlos Hernández-Monteagudo CE F CA 1 CENTRO DE ESTUDIOS DE FÍSICA DEL COSMOS DE ARAGÓN (CE F CA) J-PAS 10th Collaboration Meeting March 11th 2015 Cosmology.
COSMIC MAGNIFICATION the other weak lensing signal Jes Ford UBC graduate student In collaboration with: Ludovic Van Waerbeke COSMOS 2010 Jes Ford Jason.
Cheng Zhao Supervisor: Charling Tao
Inh Jee University of Texas at Austin Eiichiro Komatsu & Karl Gebhardt
Some bonus cosmological applications of BigBOSS ZHANG, Pengjie Shanghai Astronomical Observatory BigBOSS collaboration meeting, Paris, 2012 Refer to related.
3D Matter and Halo density fields with Standard Perturbation Theory and local bias Nina Roth BCTP Workshop Bad Honnef October 4 th 2010.
Bayesian analysis of joint strong gravitational lensing and dynamic galactic mass in SLACS: evidence of line-of-sight contamination Antonio C. C. Guimarães.
Reducing Photometric Redshift Uncertainties Through Galaxy Clustering
Ch3: Model Building through Regression
Princeton University & APC
Ben Wandelt Flatiron Institute
Photometric Redshift Training Sets
CS639: Data Management for Data Science
Cosmology.
Presentation transcript:

J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference  Goal: 3D cosmography homogeneous evolution Cosmological parameters Dark Energy Power-spectrum / BAO non-linear structure formation Galaxy properties Initial conditions Large scale flows Motivation Tegmark et al. (2004) Jasche et al. (2010)

J. Jasche, Bayesian LSS Inference Motivation  No ideal Observations in reality

J. Jasche, Bayesian LSS Inference Motivation  No ideal Observations in reality Statistical uncertainties Noise, cosmic variance etc.

J. Jasche, Bayesian LSS Inference Motivation  No ideal Observations in reality Statistical uncertainties Systematics Noise, cosmic variance etc. Kitaura et al. (2009) Survey geometry, selection effects, biases

J. Jasche, Bayesian LSS Inference Motivation  No ideal Observations in reality Statistical uncertainties Systematics Noise, cosmic variance etc. Kitaura et al. (2009) Survey geometry, selection effects, biases No unique recovery possible!!!

J. Jasche, Bayesian LSS Inference Bayesian Approach “ Which are the possible signals compatible with the observations? ”

J. Jasche, Bayesian LSS Inference  Object of interest: Signal posterior distribution “ Which are the possible signals compatible with the observations? ” Bayesian Approach

J. Jasche, Bayesian LSS Inference  Object of interest: Signal posterior distribution “ Which are the possible signals compatible with the observations? ” Prior Bayesian Approach

J. Jasche, Bayesian LSS Inference  Object of interest: Signal posterior distribution “ Which are the possible signals compatible with the observations? ” Likelihood Bayesian Approach

J. Jasche, Bayesian LSS Inference  Object of interest: Signal posterior distribution “ Which are the possible signals compatible with the observations? ” Evidence Bayesian Approach

J. Jasche, Bayesian LSS Inference  Object of interest: Signal posterior distribution “ Which are the possible signals compatible with the observations? ”  We can do science! Model comparison Parameter studies Report statistical summaries Non-linear, Non-Gaussian error propagation Bayesian Approach

J. Jasche, Bayesian LSS Inference LSS Posterior  Aim: inference of non-linear density fields non-linear density field  lognormal See e.g. Coles & Jones (1991), Kayo et al. (2001)

J. Jasche, Bayesian LSS Inference LSS Posterior  Aim: inference of non-linear density fields non-linear density field  lognormal “correct” noise treatment  full Poissonian distribution See e.g. Coles & Jones (1991), Kayo et al. (2001) Credit: M. Blanton and the Sloan Digital Sky Survey

J. Jasche, Bayesian LSS Inference LSS Posterior  Problem: Non-Gaussian sampling in high dimensions direct sampling not possible usual Metropolis-Hastings algorithm inefficient  Aim: inference of non-linear density fields non-linear density field  lognormal “correct” noise treatment  full Poissonian distribution See e.g. Coles & Jones (1991), Kayo et al. (2001) Credit: M. Blanton and the Sloan Digital Sky Survey

J. Jasche, Bayesian LSS Inference LSS Posterior  Problem: Non-Gaussian sampling in high dimensions direct sampling not possible usual Metropolis-Hastings algorithm inefficient  Aim: inference of non-linear density fields non-linear density field  lognormal “correct” noise treatment  full Poissonian distribution See e.g. Coles & Jones (1991), Kayo et al. (2001) HADES (HAmiltonian Density Estimation and Sampling) Jasche, Kitaura (2010) Credit: M. Blanton and the Sloan Digital Sky Survey

J. Jasche, Bayesian LSS Inference LSS inference with the SDSS  Application of HADES to SDSS DR7 cubic, equidistant box with sidelength 750 Mpc ~ 3 Mpc grid resolution ~ 10^7 volume elements / parameters Jasche, Kitaura, Li, Enßlin (2010)

J. Jasche, Bayesian LSS Inference  Application of HADES to SDSS DR7 cubic, equidistant box with sidelength 750 Mpc ~ 3 Mpc grid resolution ~ 10^7 volume elements / parameters  Goal: provide a representation of the SDSS density posterior to provide 3D cosmographic descriptions to quantify uncertainties of the density distribution LSS inference with the SDSS Jasche, Kitaura, Li, Enßlin (2010)

J. Jasche, Bayesian LSS Inference  Application of HADES to SDSS DR7 cubic, equidistant box with sidelength 750 Mpc ~ 3 Mpc grid resolution ~ 10^7 volume elements / parameters  Goal: provide a representation of the SDSS density posterior to provide 3D cosmographic descriptions to quantify uncertainties of the density distribution  3 TB, 40,000 density samples LSS inference with the SDSS Jasche, Kitaura, Li, Enßlin (2010)

J. Jasche, Bayesian LSS Inference What are the possible density fields compatible with the data ? LSS inference with the SDSS

J. Jasche, Bayesian LSS Inference What are the possible density fields compatible with the data ? LSS inference with the SDSS

J. Jasche, Bayesian LSS Inference

 ISW-templates LSS inference with the SDSS

J. Jasche, Bayesian LSS Inference Redshift uncertainties  Photometric surveys deep volumes millions of galaxies low redshift accuracy

J. Jasche, Bayesian LSS Inference Redshift uncertainties Galaxy positions Matter density  Photometric surveys deep volumes millions of galaxies low redshift accuracy

J. Jasche, Bayesian LSS Inference Redshift uncertainties Galaxy positions Matter density  We know that: Galaxies trace the matter distribution Matter distribution is homogeneous and isotropic Jasche et al. (2010)  Photometric surveys deep volumes millions of galaxies low redshift accuracy

J. Jasche, Bayesian LSS Inference Redshift uncertainties Galaxy positions Matter density  We know that: Galaxies trace the matter distribution Matter distribution is homogeneous and isotropic Jasche et al. (2010)  Photometric surveys deep volumes millions of galaxies low redshift accuracy

J. Jasche, Bayesian LSS Inference Redshift uncertainties Galaxy positions Matter density  We know that: Galaxies trace the matter distribution Matter distribution is homogeneous and isotropic Jasche et al. (2010) Joint inference  Photometric surveys deep volumes millions of galaxies low redshift accuracy

J. Jasche, Bayesian LSS Inference Joint sampling

J. Jasche, Bayesian LSS Inference Joint sampling  Metropolis Block sampling:

J. Jasche, Bayesian LSS Inference  Application of HADES to artificial photometric data cubic, equidistant box with sidelength 1200 Mpc ~ 5 Mpc grid resolution ~ 10^7 volume elements / parameters Photometric redshift inference

J. Jasche, Bayesian LSS Inference  Application of HADES to artificial photometric data cubic, equidistant box with sidelength 1200 Mpc ~ 5 Mpc grid resolution ~ 10^7 volume elements / parameters ~ 2 x 10^7 radial galaxy positions / parameters (~100 Mpc) Photometric redshift inference

J. Jasche, Bayesian LSS Inference  Application of HADES to artificial photometric data cubic, equidistant box with sidelength 1200 Mpc ~ 5 Mpc grid resolution ~ 10^7 volume elements / parameters ~ 2 x 10^7 radial galaxy positions / parameters (~100 Mpc) ~ 3 x 10^7 parameters in total Photometric redshift inference

J. Jasche, Bayesian LSS Inference  Application of HADES to artificial photometric data cubic, equidistant box with sidelength 1200 Mpc ~ 5 Mpc grid resolution ~ 10^7 volume elements / parameters ~ 2 x 10^7 radial galaxy positions / parameters (~100 Mpc) ~ 3 x 10^7 parameters in total Photometric redshift inference

J. Jasche, Bayesian LSS Inference Photometric redshift sampling Jasche, Wandelt (2011)

J. Jasche, Bayesian LSS Inference Deviation from the truth Jasche, Wandelt (2011) BeforeAfter

J. Jasche, Bayesian LSS Inference Deviation from the truth Jasche, Wandelt (2011) Raw dataDensity estimate

J. Jasche, Bayesian LSS Inference Summary & Conclusion  LSS 3D density inference  Correction of systematic effects, survey geometry, selection effects  Accurate treatment of Poissonian shot noise  Precision non-linear density inference  Non-linear, non-Gaussian error propagation  Joint redshift & 3D density inference  Positive influence on mutual inference  Improved redshift accuracy  Treatment of joint uncertainties  Also note:  methods are general  complementary data sets 21 cm, X-ray, etc

J. Jasche, Bayesian LSS Inference The End … Thank you

J. Jasche, Bayesian LSS Inference Resimulating the SGW  Building initial conditions for the Sloan Volume resimulate the Sloan Great Wall (SGW) Preliminary Work

J. Jasche, Bayesian LSS Inference Marginalized redshift posterior Jasche, Wandelt (2011)

J. Jasche, Bayesian LSS Inference  IDEA: Follow Hamiltonian dynamics  Conservation of energy  Metropolis acceptance probability is unity  All samples are accepted Persistent motion Hamiltonian Sampling = 1 HADES (Hamiltonian Density Estimation and Sampling)

J. Jasche, Bayesian LSS Inference HADES vs. ARES HADES Variance Mean

J. Jasche, Bayesian LSS Inference ARES HADES HADES vs. ARES

J. Jasche, Bayesian LSS Inference  Lensing templates LSS inference with the SDSS

J. Jasche, Bayesian LSS Inference Extensions of the sampler  Multiple block Metropolis Hastings sampling Example redshift sampling