Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram – A tree like diagram that.

Slides:



Advertisements
Similar presentations
Clustering II.
Advertisements

SEEM Tutorial 4 – Clustering. 2 What is Cluster Analysis?  Finding groups of objects such that the objects in a group will be similar (or.
Clustering (2). Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram –A tree like.
Hierarchical Clustering
Unsupervised Learning
Cluster Analysis: Basic Concepts and Algorithms
1 CSE 980: Data Mining Lecture 16: Hierarchical Clustering.
Hierarchical Clustering. Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram – A tree-like diagram that.
Data Mining Cluster Analysis Basics
Hierarchical Clustering, DBSCAN The EM Algorithm
Information Retrieval Lecture 7 Introduction to Information Retrieval (Manning et al. 2007) Chapter 17 For the MSc Computer Science Programme Dell Zhang.
Clustering Paolo Ferragina Dipartimento di Informatica Università di Pisa This is a mix of slides taken from several presentations, plus my touch !
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ What is Cluster Analysis? l Finding groups of objects such that the objects in a group will.
Data Mining Cluster Analysis: Basic Concepts and Algorithms
Agglomerative Hierarchical Clustering 1. Compute a distance matrix 2. Merge the two closest clusters 3. Update the distance matrix 4. Repeat Step 2 until.
More on Clustering Hierarchical Clustering to be discussed in Clustering Part2 DBSCAN will be used in programming project.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ What is Cluster Analysis? l Finding groups of objects such that the objects in a group will.
Data Mining Cluster Analysis: Basic Concepts and Algorithms
unsupervised learning - clustering
Data Mining Cluster Analysis: Basic Concepts and Algorithms
Data Mining Cluster Analysis: Basic Concepts and Algorithms
Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram –A tree like diagram that.
Clustering II.
4. Ad-hoc I: Hierarchical clustering
Cluster Analysis.
Cluster Analysis: Basic Concepts and Algorithms
Cluster Analysis CS240B Lecture notes based on those by © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004.
© University of Minnesota Data Mining for the Discovery of Ocean Climate Indices 1 CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance.
Clustering Ram Akella Lecture 6 February 23, & 280I University of California Berkeley Silicon Valley Center/SC.
DATA MINING LECTURE 8 Clustering The k-means algorithm
ZHANGXI LIN TEXAS TECH UNIVERSITY Lecture Notes 10 CRM Segmentation - Introduction.
Clustering Basic Concepts and Algorithms 2
Hierarchical Clustering
Partitional and Hierarchical Based clustering Lecture 22 Based on Slides of Dr. Ikle & chapter 8 of Tan, Steinbach, Kumar.
Data Mining Cluster Analysis: Basic Concepts and Algorithms Adapted from Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar.
CSE5334 DATA MINING CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai Li (Slides.
Ch. Eick: Introduction to Hierarchical Clustering and DBSCAN 1 Remaining Lectures in Advanced Clustering and Outlier Detection 2.Advanced Classification.
Computational Biology Clustering Parts taken from Introduction to Data Mining by Tan, Steinbach, Kumar Lecture Slides Week 9.
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Definition Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to)
Clustering/Cluster Analysis. What is Cluster Analysis? l Finding groups of objects such that the objects in a group will be similar (or related) to one.
Information Retrieval and Organisation Chapter 17 Hierarchical Clustering Dell Zhang Birkbeck, University of London.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Cluster Analysis This lecture node is modified based on Lecture Notes for Chapter.
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction.
CSE4334/5334 Data Mining Clustering. What is Cluster Analysis? Finding groups of objects such that the objects in a group will be similar (or related)
Data Mining Cluster Analysis: Basic Concepts and Algorithms.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εξόρυξη Δεδομένων Ομαδοποίηση (clustering) Διδάσκων: Επίκ. Καθ. Παναγιώτης Τσαπάρας.
Data Mining Classification and Clustering Techniques Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining.
Computational Biology
Data Mining: Basic Cluster Analysis
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Hierarchical Clustering
More on Clustering in COSC 4335
CSE 4705 Artificial Intelligence
Clustering CSC 600: Data Mining Class 21.
Clustering 28/03/2016 A diák alatti jegyzetszöveget írta: Balogh Tamás Péter.
Clustering Techniques for Finding Patterns in Large Amounts of Biological Data Michael Steinbach Department of Computer Science
What Is the Problem of the K-Means Method?
Hierarchical Clustering
CSE 5243 Intro. to Data Mining
Hierarchical Clustering
Cluster Analysis: Basic Concepts and Algorithms
CSE 5243 Intro. to Data Mining
K-means and Hierarchical Clustering
Clustering.
Data Mining Cluster Techniques: Basic
Clustering 23/03/2016 A diák alatti jegyzetszöveget írta: Balogh Tamás Péter.
SEEM4630 Tutorial 3 – Clustering.
Hierarchical Clustering
Data Mining Cluster Analysis: Basic Concepts and Algorithms
Presentation transcript:

Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram – A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering Do not have to assume any particular number of clusters – Any desired number of clusters can be obtained by ‘cutting’ the dendogram at the proper level They may correspond to meaningful taxonomies – Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, …)

Hierarchical Clustering Two main types of hierarchical clustering – Agglomerative: Start with the points as individual clusters At each step, merge the closest pair of clusters until only one cluster (or k clusters) left – Divisive: Start with one, all-inclusive cluster At each step, split a cluster until each cluster contains a point (or there are k clusters) Traditional hierarchical algorithms use a similarity or distance matrix – Merge or split one cluster at a time

Agglomerative Clustering Algorithm More popular hierarchical clustering technique Basic algorithm is straightforward 1.Compute the proximity matrix 2.Let each data point be a cluster 3.Repeat 4.Merge the two closest clusters 5.Update the proximity matrix 6.Until only a single cluster remains Key operation is the computation of the proximity of two clusters – Different approaches to defining the distance between clusters distinguish the different algorithms

Single Link or Min Proximity Matrix: Minimum of the distance (Maximum of the similarity) between any two points in the two different clusters

The distance between points 3 and 6 is 0.11

Complete Link or Max Proximity Matrix: Maximum of the distance (Minimum of the similarity) between any two points in the two different clusters

because

Group Average Proximity Matrix: average pairwise proximity among all pairs of points in the different clusters Intermediate approach between the single and complete link approaches

Ward’s Method Proximity Matrix: the squared error that results when two clusters are merged