Charge frustration and novel electron-lattice coupled phase transition in molecular conductor DI-DCNQI 2 Ag Charge frustration and novel electron-lattice.

Slides:



Advertisements
Similar presentations
H. Okamura, M. Matsubara, T. Nanba – Kobe Univ.
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
One-dimensional approach to frustrated magnets
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Pressure-Induced Hydrogen-dominant metallic state in Aluminum Hydride HAGIHARA Toshiya Shimizu-group Igor Goncharenko et al., Phy. Rev. Lett. 100,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 George Sawatzky.
Metals: Bonding, Conductivity, and Magnetism (Ch. 6)
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
2012 Summer School on Computational Materials Science Quantum Monte Carlo: Theory and Fundamentals July 23–-27, 2012 University of Illinois at Urbana–Champaign.
Interacting charge and spin chains in high magnetic fields James S. Brooks, Florida State University, DMR [1] D. Graf et al., High Magnetic Field.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
ISCOM2009 International symposium on crystalline organic metals, superconductors, ferromagnets announcement At Niseko in Hokkaido, Japan On Sep. 12 – 17,
Superconductivity in Zigzag CuO Chains
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
ECRYS-2008, 27 August 2008 Charge ordering in (EDT-TTFCONMe 2 )Br and o-(Me 2 TTF)Br P. Auban-Senzier, C.Pasquier Laboratoire de Physique des Solides,
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
Quick and Dirty Introduction to Mott Insulators
Neutron scattering investigation of (TMTTF) 2 PF 6 P. Foury-Leylekian a, S. Petit b, B. Hennion b, A. Moradpour a and J.-P. Pouget a a.Laboratoire de Physique.
1 Ferroelectricity in organic low- dimensional systems Pierre Monceau * Institut Neel, CNRS and University Joseph Fourier, Grenoble, France * in collaboration.
Searching for spin-liquids and non-Fermi liquids in quantum strongly correlated systems.
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Magnetism III: Magnetic Ordering
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Charge transport in DNA molecules: Structural and dynamical disorder 张伟 北京应用物理与计算研究所 2007 年 10 月.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Suppression of charge ordering across the spin- Peierls transition in TMTTF based Q1D material Shigeki Fujiyama Inst. for Molecular Science (Dept. of Applied.
Frustrated Quantum Magnets in Strong Magnetic Fields F. Mila Institute of Theoretical Physics Ecole Polytechnique Fédérale de Lausanne Switzerland.
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov Linear Response 50 Equilibrium & NE response collaborators: Akira.
Vector Chiral States in Low- dimensional Quantum Spin Systems Raoul Dillenschneider Department of Physics, University of Augsburg, Germany Jung Hoon Kim.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Magnets without Direction Collin Broholm Johns Hopkins University and NIST Center for Neutron Research  Introduction  Moment Free Magnetism in one dimension.
Decimation 1 1.
1 SHIMIZU Group ONODA Suzue Metallization and molecular dissociation of SnI 4 under pressure Ref: A.L. Chen, P.Y. Yu, M.P. Pasternak, Phys. Rev. B. 44,
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Magnets without Direction Collin Broholm Johns Hopkins University and NIST Center for Neutron Research  Introduction  Moment Free Magnetism in one dimension.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Minoru Yamashita, Kyoto Univ. Quantum spin liquid in 2D Recipe.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Localized Magnetic States in Metals Miyake Lab. Akiko Shiba Ref.) P. W. Anderson, Phys. Rev. 124 (1961) 41.
Mott Transition and Superconductivity in Two-dimensional
Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Ashvin Vishwanath UC Berkeley
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Magnets without Direction Collin Broholm Johns Hopkins University and NIST Center for Neutron Research  Introduction  Moment Free Magnetism in one dimension.
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Evolution of the orbital Peierls state with doping
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Sumit Mazumdar University of Arizona CHARGE ORDERING AND LOCAL SINGLET FORMATION IN ¼-FILLED BAND CHARGE- TRANSFER SOLIDS AND OXIDES OF EARLY TRANSITION.
Electronic polarization. Low frequency dynamic properties.
Presentation transcript:

Charge frustration and novel electron-lattice coupled phase transition in molecular conductor DI-DCNQI 2 Ag Charge frustration and novel electron-lattice coupled phase transition in molecular conductor DI-DCNQI 2 Ag Hitoshi Seo Yukitoshi Motome Synchrotron Radiation Research Center, Japan Atomic Energy Agency / SPring-8 Department of Applied Physics, University of Tokyo

contents: 1. Charge frustration in molecular conductors 2. Quasi-one-dimensional DI-DCNQI 2 Ag ; experimental background 3. Spinless fermion model coupled to the lattice ― mean-field analysis - 4. Summary

contents: 1. Charge frustration in molecular conductors [1] 2. Quasi-one-dimensional DI-DCNQI 2 Ag ; experimental background 3. Spinless fermion model coupled to the lattice ― mean-field analysis - [2] 4. Summary [1] H. Seo, M. Ogata, Phys. Rev. B 64 (2001) J. Merino, H. Seo, M. Ogata, Phys. Rev. B 71 (2005) [2] H. Seo, Y. Motome, in preparation (review) H. Seo, J. Merino, H. Yoshioka, M. Ogata, J. Phys. Soc. Jpn. 75 (2006) (poster) Y. Otsuka, H. Seo, Y. Motome, T. Kato, P-30 preprint submitted to J. Phys. Soc. Jpn. [cond-mat/arXiv: ]

contents: 1. Charge frustration in molecular conductors [1] 2. Quasi-one-dimensional DI-DCNQI 2 Ag ; experimental background 3. Spinless fermion model coupled to the lattice ― mean-field analysis - [2] 4. Summary [1] H. Seo, M. Ogata, Phys. Rev. B 64 (2001) J. Merino, H. Seo, M. Ogata, Phys. Rev. B 71 (2005) [2] H. Seo, Y. Motome, in preparation (review) H. Seo, J. Merino, H. Yoshioka, M. Ogata, J. Phys. Soc. Jpn. 75 (2006) (poster) Y. Otsuka, H. Seo, Y. Motome, T. Kato, P-30 preprint submitted to J. Phys. Soc. Jpn. [cond-mat/arXiv: ]

Molecular (Organic) Conductors molecules assemble by weak van-der-Waals interaction → closed packed lattices with geometrical frustration are frequently generated.  -(BEDT-TTF) 2 X  -(BEDT-TTF) 2 X

Molecular (Organic) Conductors  -(BEDT-TTF) 2 X  -(BEDT-TTF) 2 X molecules assemble by weak van-der-Waals interaction → closed packed lattices with geometrical frustration are frequently generated. 1/2-filled Mott insulating state → Heisenberg spin-1/2 system

Molecular (Organic) Conductors  -(BEDT-TTF) 2 X  -(BEDT-TTF) 2 X 1/2-filled Mott insulating state → Heisenberg spin-1/2 system 1/4-filled charge ordering system molecules assemble by weak van-der-Waals interaction → closed packed lattices with geometrical frustration are frequently generated. anisotropic triangular lattices

antiferromagnetic spin system Spin Frustration ? -J charge ordering system “Charge Frustration” ? -V geometrical “charge frustration” in charge ordering systems P. W. Anderson, Phys. Rev. 104 (1954) 1008 J  S i S j (J >0)V  n i n j (V >0 ; repulsion ) Fe 3 O 4

1D: zigzag ladder … PrBa 2 Cu 4 O 8 2D: triangular lattice …  -ET 2 X,  -ET 2 X A 2 FeO 4 3D: pyrochlore lattice (e.g. in spinels) … Fe 3 O 4, AlV 2 O 4, LiV 2 O 4, etc. examples of charge frustrated systems

charge frustration destabilizes charge order 1/4-filled extended Hubbard model Insulator H = t ij  ( c i  † c j  + h.c. ) + U  n i↓ n i↑ + V ij  n i n j 1D zigzag ladder : H.Seo & M.Ogata, PRB 64, (2001) S.Ejima et al., PRB 72, (2005) 2D anisotropic triangular lattice : J.Merino, H.Seo, & M.Ogata, PRB 71, (2005) H.Watanabe & M.Ogata, JPSJ 75, (2006) S.Nishimoto, M.Shingai, Y. Ohta, cond-mat/

charge frustration destabilizes charge order 1/4-filled extended Hubbard model H = t ij  ( c i  † c j  + h.c. ) + U  n i↓ n i↑ + V ij  n i n j in the materials...frustration frequently relaxed by coupling to other degrees of freedoms : spin / orbital / lattice

charge frustration destabilizes charge order 1/4-filled extended Hubbard model H = t ij  ( c i  † c j  + h.c. ) + U  n i↓ n i↑ + V ij  n i n j in the materials...frustration frequently relaxed by coupling to other degrees of freedoms : spin / orbital / lattice  -(BEDT-TTF) 2 RbZn(SCN) 4 horizontal type charge order with large lattice distortions, molecular rotations M.Watanabe et al., JPSJ 73, 116 (2004) X-ray structure study + [additional electron-lattice couplings]

charge frustration destabilizes charge order 1/4-filled extended Hubbard model H = t ij  ( c i  † c j  + h.c. ) + U  n i↓ n i↑ + V ij  n i n j in the materials...frustration frequently relaxed by coupling to other degrees of freedoms : spin / orbital / lattice (DI-DCNQI) 2 Ag : + [additional electron-lattice couplings] this compound has been considered as a canonical quasi-1-dim 1/4-filled system. spiral inter-chain coupling gives rise to charge frustration. novel charge-lattice coupled phase is generated to relax the frustration.

contents: 1. Charge frustration in molecular conductors [1] 2. Quasi-one-dimensional DI-DCNQI 2 Ag ; experimental background 3. Spinless fermion model coupled to the lattice ― mean-field analysis - [2] 4. Summary [1] H. Seo, M. Ogata, Phys. Rev. B 64 (2001) J. Merino, H. Seo, M. Ogata, Phys. Rev. B 71 (2005) [2] H. Seo, Y. Motome, in preparation (review) H. Seo, J. Merino, H. Yoshioka, M. Ogata, J. Phys. Soc. Jpn. 75 (2006) (poster) Y. Otsuka, H. Seo, Y. Motome, T. Kato, P-30 preprint submitted to J. Phys. Soc. Jpn. [cond-mat/arXiv: ]

Quasi-one-dimensional molecular conductor DI-DCNQI 2 Ag K. Hiraki, K. Kanoda, PRB 54, (1996) DCNQI crystal structure Ag + : closed shell → 1/4-filled  -band of DCNQI molecular orbitals 1st principle band calculations T. Miyazaki et al, PRL 74, 5104 (1994) Q1D electronic structure (t ⊥ < 0.2t ∥ ) ( DMe-DCNQI 2 Ag )

DCNQI crystal structure phase transition Quasi-one-dimensional molecular conductor DI-DCNQI 2 Ag K. Hiraki, K. Kanoda, PRB 54, (1996)

Quasi-one-dimensional molecular conductor DI-DCNQI 2 Ag T. Itou et al., PRL 93, (2004)

NMR intensity NMR shift (ppm) 13 C NMR (powder) split of resonance lines First “direct” observation of charge ordering in 2:1 salts Wigner crystal-type charge ordering (no lattice displacement) K. Hiraki, K. Kanoda, PRL 80, 4737 (1998) Meneghetti et al, SSC 168, 632 (2002) Yamamoto et al, PRB 71, (2005) but... IR, Raman : inconsistent ? 4k F superlattice peak in X-ray diffraction pattern of charge (and/or lattice) ordering was not settled … Nogami et al, J.Phys.IV 9, 357 (1999)

Recent crystal structure analysis using synchrotron X-ray (T=50 K) novel charge-lattice coupled ordering ! A B C Kakiuchi-Wakabayashi-Sawa-Itou-Kanoda, PRL 98, (2007) A charge order lattice uniform charge order lattice dimerization charge uniform lattice dimerization B C three kinds of ordering out of simple kind of chains

Interchain “spiral” frustration for charge order a+b c 0 1/4 1/2 3/4 0 1/4 1/2 3/4 V V’ ? DCNQI “charge frustration” K. Kanoda et al, J. Phys. IV France 131 (2005) 21 (proc. of ECRYS) Kakiuchi-Wakabayashi-Sawa-Itou-Kanoda, PRL 98, (2007) A B

contents: 1. Charge frustration in molecular conductors [1] 2. Quasi-one-dimensional DI-DCNQI 2 Ag ; experimental background 3. Spinless fermion model coupled to the lattice ― mean-field analysis - [2] 4. Summary [1] H. Seo, M. Ogata, Phys. Rev. B 64 (2001) J. Merino, H. Seo, M. Ogata, Phys. Rev. B 71 (2005) [2] H. Seo, Y. Motome, in preparation (review) H. Seo, J. Merino, H. Yoshioka, M. Ogata, J. Phys. Soc. Jpn. 75 (2006) (poster) Y. Otsuka, H. Seo, Y. Motome, T. Kato, P-30 preprint submitted to J. Phys. Soc. Jpn. [cond-mat/arXiv: ]

・ quasi-1-D extended Hubbard model + electron-lattice(adiabadic) couplings H =  t ( 1 + g P u i ) ( c i  † c i+1  + h.c. ) + U  n i↓ n i↑ + V  n i n i+1 + ( K P / 2 )  u i 2 + V ⊥  n i n j interchain Coulomb repulsion (un-frustrated) : mean-field Peierls (SSH) -type electron-lattice interaction electron-lattice coupled model for quasi-1-dim. molecular conductors Y. Otsuka, H. Seo, Y. Motome, T. Kato, submitted to JPSJ [cond-mat/arXiv: ] P-30

Monte-Carlo phase diagram for t=1, U = 6, V = 2.5, g P 2 /K P = 1 paramagnetic lattice dimerized Mott insulator uniform 1/4-filled metal paramagnetic charge order insulator dimer-Mott insulator + spin-Peierls singlet charge order insulator + spin-Peierls singlet electron-lattice coupled model for quasi-1-dim. molecular conductors Y. Otsuka, H. Seo, Y. Motome, T. Kato, submitted to JPSJ [cond-mat/arXiv: ] P-30

3-dimensional interacting spinless fermion + coupling to lattice H 1D =  t (r ij ) ( c i † c j + h.c. ) + V (r ij )  n i n j H interchain = V ’ (r ij )  n i n j + V ’’ (r ij )  n i n j 1D chains : 1/2-filled spinless t-V model (U→∞ limit of extended Hubbard model) spiral interchain Coulomb repulsions Method u i : classical, uniaxial mean-field (Hartree-Fock) approximation for n i n j terms determine 〈 n i 〉, 〈 c i † c j 〉, u i self-consistently super-cell size : 2-sites in chain direction × 8=16 sites t (r ij ) = t [ 1 +  (u i - u j ) ] V (r ij ) = V [ 1 +  (u i - u j ) ] V ’ (r ij ) = V ’ [ 1 +  ’  (u i - u j ) ] V ’’ (r ij ) = V ’’ [ 1 +  ’’  (u i - u j ) ] coupling to lattice is introduced as H elastic = K P / 2  u i 2 ( SSH/Peierls-type ) Model H = H 1D + H interchain + H elastic

Choice of parameters ・ V’/V=0.5, V’’/V=0.1 (cf. from distances between centerof DCNQIs, V’/V=0.51, V’’/V=0.48) ・  /  =0.5,  ’/  =0.033,  ’’/  =0.098 : deduced from V(r ij ) ∝ r ij  Conditions for self-consistent CO and DM solutions ・ one interchain bond per each spiral is frustrated. ・ one interchain bond per each “array” is frustrated. (due to periodic boundary condition) → only two kind of patterns are possible AB

T=0 : as fermion-lattice coupling is increased, CO → Mix→ dimer charge order & lattice dimerization : frustration in 1/4 of interchain bonds parameters : t=1, V=1.5, V’/V=0.5, V’’/V=0.1,  =1,  =0.5,  ’ =0.033,  ’’ =0.098 CO+dimer charge disproportionationlattice distortion

T=0 : as fermion-lattice coupling is increased, CO → Mix→ dimer parameters : t=1, V=1.5, V’/V=0.5, V’’/V=0.1,  =1,  =0.5,  ’ =0.033,  ’’ =0.098 mixed state charge frustration is relaxed ( CO : dimer : coex = 1:1:2 ) = Kakiuchi et al state charge disproportionationlattice distortion

finite-T property with mixed phase ground state : intermediate phase mixed state CO+dimer uniform metal 1/K=0.15 another scenario : frustrated CO state destabilized if one takes into account of quantum fluctuation H. Seo, M. Ogata, Phys. Rev. B 64 (2001) J. Merino, H. Seo, M. Ogata, Phys. Rev. B 71 (2005)

characteristic temperature T* : dimer order develops at T<T* CO+dimer mixed state

characteristic temperature T* : dimer order develops at T<T* CO+dimer mixed state T*

complex conductance G(  =1kHz) 100 kHz 1 MHz 5 MHz T 1 =200KT 2 =75K dielectric constant F. Nad et al, J. Phys. Cond. Mat., 16 (2004) 7107 two characteristic temperatures seen in transport properties characteristic temperature T* : dimer order develops at T<T* CO+dimer mixed state T*

characteristic temperature T* within the ordered phase NMR intensity NMR shift (ppm) 13 C NMR (powder) K. Hiraki, K. Kanoda, PRL 80, 4737 (1998) T. Itou et al., PRL 93, (2004) anomalous broadening well above T N (= 5K) broad peak within ordered phase resistivity

summary charge ordered insulator small el-lat intlarge el-latt int dimerized Mott insulator frustration charge ordered insulator small el-lat intlarge el-latt int dimerized Mott insulator novel “mixed” phase frustration is relaxed ! ・ Hartree-Fock calc. on 3D spinless fermion model + lattice : reproduces Kakiuchi et al’s state ・ finite-T calc. : different T-depencence for CO and dimerization → characteristic temperature within ordered phase pointed out by Nad et al