Hyperon Photoproduction by Linearly Polarized Photons at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration SPIN2006 Oct. 6th 2006.

Slides:



Advertisements
Similar presentations
Polarization Observables in Hyperon Photoproduction with CLAS Craig Paterson University of Glasgow Eurotag Workshop Glasgow, 1 st September 2008.
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
 photoproduction with linearly polarized photons at SPring-8 SENDAI03 16 th June, 2003 Tsutomu Mibe (Research Center for Nuclear Physics, Osaka univ.,
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
1 Elementary Reactions at LEPS/SPring-8 J. K. Ahn Pusan National University Oct. 11, 2006.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
1 K* Photoproduction off the proton at CLAS via Ishaq Hleiqawi OHIO UNIVERSITY NSTAR2005 Oct. 12, 2005.
C x and C x for K + Λ and K +  o Photo-production R. Bradford Department of Physics and Astronomy, University of Rochester R. Schumacher Department of.
Search for  + via K + p   + X reaction with high-resolution spectrometer system Kyoto University S. Dairaku for E559 collaboration.
 *(1520) CrossSection Zhiwen Zhao Physics 745. Λ BARYONS (S = − 1, I = 0) Λ 0 = u d s Λ(1520) D 03 I( J P ) = 0( 3/2 − ) Mass m = ± 1.0 MeV [a]
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Experimental results of K + photoproduction at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration HYP2003 Oct. 16th Introduction.
25 May 2005SPring-8/LEPS GeV photon beam experiments at the SPring-8 laser-backscattering facility Introduction LEPS (Laser-Electron.
Coherent  -meson Photo-production from Deuterons Near Threshold Wen-Chen Chang Wen-Chen Chang for LEPS collaboration Institute of Physics, Academia Sinica,
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Exotics search at SPring-8 M. Niiyama, Kyoto Univ.  Introduction of SPring-8/LEPS  Exotics search in backward  production  Photoproduction of  (1405)
Status and Prospects of Hadron Physics at LEPS in Japan Takashi Nakano (RCNP, Osaka Univ.) International School of Nuclear Physics 37 th Course: Probing.
Hadron physics with meson photoproduction at LEPS/SPring-8 Tomoaki Hotta (RCNP, Osaka University) for LEPS Collaboration MESON 2010 CRACOW, POLAND 12 JUNE.
Photoreactions with Polarized HD target at SPring-8 1. SPring-8 Facility 2. Physics Motivation 3. HD projects: Polarized proton and deuteron target: HD.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
Contents 2 J-PARC E19 Collaboration 3 Pentaquark search 4 Genuine exotic hadron (uudds bar ) M = ~1540 MeV/c 2 (decay    KN) Situation is still controversial...
Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron [Contents] 1. Introduction 2. Principle of experiment 3. Experiment at.
Wen-Chen Chang Outline Laser-Electron Photon from Synchrotron facility. Uniqueness of SPring-8 LEPS experiment. –Vector Meson Photo-Production near production.
Unpolarized and polarized elementary kaon electroproduction at MAMI Patrick Achenbach U Mainz June 2o12.
K +  photoproduction with the Crystal Ball at MAMI T.C. Jude The University of Edinburgh New method of K + detection with the Crystal Ball Extraction.
Workshop on LEPS/SPring-8 new beamline, 28~29 July 2005, RCNP, Japan  + photoproduction with vector K* (including other recent results) Seung-il Nam *1,2.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
1 Single  0 photoproduction at SPring-8/LEPS Mizuki Sumihama Osaka university, RCNP JPS meeting March 2007.
K +  and K +  0 photoproduction at SPring-8/LEPS Mizuki Sumihama Department of physics Osaka Univ. for LEPS collaboration 1. Introduction 2. Experiment.
Measurement of polarization observables in  photoproduction with linearly polarized photons at BL33LEP/SPring-8 Spring-8 LEPS seminar 5 th February, 2003.
1 Tomoaki Hotta (RCNP, Osaka Univ.) for The LEPS Collaboration Cracow Epiphany Conference, Jan 6, 2005 Introduction LEPS experiment Results from new LD.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Differential cross sections for K + photoproduction at SPring-8/LEPS. Mizuki Sumihama Department of physics Tohoku university For LEPS collaboration JPS.
MC Check of Analysis Framework and Decay Asymmetry of  W.C. Chang 11/12/2005 LEPS Collaboration Meeting in Taiwan.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
Kaon Production on the Nucleon D. G. Ireland MENU Rome, September 30 – October 4, 2013.
Recent results and future prospects of the Laser Electron Photon experiment at SPring-8 T. Hotta (RCNP Osaka University) the LEPS collaboration 第六届中日核物理研讨会,
Search for the omega-mesic nuclei at SPring-8 LEPS Norihito Muramatsu RCNP, Osaka University 17 Feb
Takashi NAKANO (RCNP, Osaka University) Joint Symposium of 'Exotic Hadron' and 'Hadrons in Nuclei' New Frontiers in QCD 2010 Feb. 18th LEPS Experiments.
The  p  K +  and  p  K +  0 reactions at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration HYP2006 Oct. 13th 2006.
Pentaquark search at SPring-8 LEPS Norihito Muramatsu RCNP, Osaka University For the LEPS Collaboration 22 Apr ~~~ Today’s menu ~~~
Status of Beam Asymmetry Measurements for Meson Photoproduction ASU Meson Physics Group Hadron Spectroscopy WG Meeting – June 2009 Status of Beam Asymmetry.
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
Photoproduction of the  (1385) resonance at LEPS K. Hicks & D. Keller, Ohio U. LEPS Collaboration Meeting May 1, 2008.
Comparison between ūu and d̄d productions by the γp→ π - Δ ++ and π + Δ 0 reactions at forward π angles at E γ = GeV Oct/5/2015 RCNP, Osaka University.
Search for the  + in photoproduction experiments at CLAS APS spring meeting (Dallas) April 22, 2006 Ken Hicks (Ohio University) for the CLAS Collaboration.
(RCNP, Osaka University) for the LEPS collaboration
K* photoproduction from g11 K. Hicks Ohio University HSG meeting, 12 June 2009.
Recent Results from LEPS/SPring-8 Ken Hicks Ohio University, USA Sept. 21, 2009 on behalf of LEPS collaboration International Conference on Quark Nuclear.
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
1 K + Photoproduction and  0 photoproduction by Linearly Polarized Photons at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration.
Quark Hadron Physics and LEPS Takashi Nakano RCNP, Osaka University Physic Motivation LEPS facility  photo-production Pentaquark  + Summary LEPS ASPE2010,
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
Measurement of Photoproduction of  (1020) Mesons on Protons by Linearly Polarized Photons EMI2001, December 5th, 2001 T.Mibe for the LEPS collaboration.
Production of  Mesons on Protons near Threshold by Linearly Polarized Photon at SPring-8/LEPS Wen-Chen Chang for LEPS collaboration Institute of Physics,
Status of LEPS Mizuki Sumihama For LEPS collaboration Gifu university New hadron  Introduction of LEPS  Previous work  Update (new setup) 
Development of polarized HD target for LEPS experiments RCNP Osaka University Japan Hideki Kohri.
1 Introduction and status of the LEPS Status of the  + Study New LEPS LD2 data Summary Recent results from LEPS T. Nakano ( RCNP, Osaka University ) MENU04.
Photoproduction of      and     on the proton for comparing ūu and d̄d productions at LEPS/SPring-8 May/16/2016 RCNP, Osaka University, Japan.
Nov/25/2016 RCNP, Osaka University, Japan Hideki Kohri
L*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set
M. Miyabe, K. Horie, S. Shimizu, W. C. Chang and LEPS collaboration
Pion and kaon photoproduction at SPring-8/LEPS
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
Photoproduction of Λ*(1405)/Σ*(1385) at LEPS/SPring8
Presentation transcript:

Hyperon Photoproduction by Linearly Polarized Photons at SPring-8/LEPS Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration SPIN2006 Oct. 6th 2006

Physics motivation It is essential to fully know N * and  * to understand baryon structure. Many nucleon resonances predicted by quark model are still missing. D 13 (1900) resonance in SAPHIR / CLAS data was found  K+K+ Y(   ) p  N, N *,  * Some resonances should couple to K  or K  channel. Kaon photoproduction is good means to search for missing resonances. Missing resonances N* and  * in s-channel

Meson exchange in t-channel K+K+ Y(   ) p  K *, K, K 1 E  = 1.5  2.4 GeV Transition region, s-channel  t-channel Contribution of t-channel meson exchange becomes large above 2GeV. Photon-beam asymmetry  natural parity exchange (K*)   = + 1 unnatural parity exchange (K, K1)   = - 1 at t = 0 and large E .

 LEPS spectrometer – forward acceptance 1m1m TOF wall MWDC 2 MWDC 3 MWDC 1 Dipole Magnet (0.7 T) Liquid Hydrogen Target (50 mm thick ) Start counter Silicon Vertex Detector Aerogel Cherenkov (n=1.03) Linearly polarized

Particle identification by time-of-flight and momentum measurements Momentum resolution ~0.8% for 2GeV/c Kaons. Time resolution ~150 ps.

K + Missing mass spectrum K+K+  p  K +  (1116)  p  K +  0 (1193 ) Z-vertex distribution LH2 target

Photon asymmetry –  (1116)  K+K*-exchange (K*-exchange is dominant) by M. Guidal.  Isobar + Regge by T. Mart and C. Bennhold.  Gent isobar model by T. Corthals. Agreement is not so bad, but still need fine optimization. Positive sign data nucl-th / SNP2004 Phys. Rev. C68, (2003) Phys. Rev. C73, (2006)

Photon asymmetry –   (1193)  K+K*-exchange (K*-exchange is dominant) by M. Guidal.  Isobar by T.Mart and C.Bennhold.  Gent isobar model by T. Corthals Agreement is not so bad, but still need fine optimization. Positive sign data nucl-th / SNP2004 Phys. Rev. C68, (2003) Phys. Rev. C73, (2006)

Differential cross sections –  (1116)  LEPS data agree with SAPHIR and CLAS at cos  = 0.75, 0.85 but discrepancy for SAHIR data is large at cos  =  LEPS data shows a small bump at W= 1960MeV.  Regge K+K*-exchange  Isobar (with D 13 )+Regge by T.Mart and C.Bennhold.  Good agreement. Resonance-like structure W (GeV) SAPHIR CLAS LEPS

Differential cross sections –   (1193)  Good agreement with CLAS.  Slightly smaller than SAPHIR.  Small bump structure around W = 2070 MeV.  Regge K+K*-exchange  Isobar model by T.Mart and C.Bennhold.  Gent isobar model by T. Corthals  Good agreement W (GeV) LEPS SAPHIR CLAS

Differential cross sections –  (1116)  Regge model K+K*-exchange K-exchange makes forward peak for K  channel.  Isobar (Feynman) only  Isobar (Feynman) + Regge by T.Mart and C.Bennhold. Forward peaking Cannot be reproduced By Feynman diagram only, at E  >2GeV. Need Regge poles. CLAS LEPS - angular dependence

Differential cross sections –  0 (1193)  Regge model K+K*-exchange K*-exchange is dominate for K  channel.  Isobar (Feynman) by T. Mart and C. Bennhold. No forward peaking. Can be explained by Feynman diagram only. - angular dependence CLAS LEPS

Differential cross sections for  p  p  0 -  Check photon normalization LEPS data Old data Curves SAID (fit data at E  < 2GeV) Good agreement with SAID  Photon normalization is OK.

Summary The K + photoproduction was measured by linearly polarized photons at SPring-8/LEPS. Photon beam asymmetry is good tool to define theoretical models. Theoretical models are still needed to be optimized. Differential cross sections were obtained at very forward angles, up to cos  cm = Bump structure was seen at W=1960 MeV in the K +  mode. We see a forward peaking in K +  while no peaking in K +  0. In order to fit the forward-angle data, a Regge pole is necessary in addition to s-channel resonances and t-channel K and K*-exchanges. Combination of isobar (Feynman) and Regge is successful to explain this forward peaking in K + . Photon normalization was checked by  p  p  0 cross sections. The data show a good agreement with SAID. LEPS photon normalization is OK. PRC73, (2006) / PRL 91, (2003).

LEPS collaboration D.S. Ahn, J.K. Ahn, H. Akimune, Y. Asano, W.C. Chang, S. Date, H. Ejiri, H. Fujimura, M. Fujiwara, K. Hicks, K. Horie, T. Hotta, K. Imai, T. Ishikawa, T. Iwata, Y.Kato, H. Kawai, Z.Y. Kim, K. Kino, H. Kohri, N. Kumagai, Y.Maeda, S. Makino, T. Matsumura, N. Matsuoka, T. Mibe, M. Miyabe, Y. Miyachi, M. Morita, N. Muramatsu, T. Nakano, Y. Nakatsugawa, M. Niiyama, M. Nomachi, Y. Ohashi, T. Ooba, H. Ookuma, D. S. Oshuev, C. Rangacharyulu, A. Sakaguchi, T. Sasaki, T. Sawada, P. M. Shagin, Y. Shiino, H. Shimizu, S. Shimizu, Y. Sugaya, M. Sumihama H. Toyokawa, A. Wakai, C.W. Wang, S.C. Wang, K. Yonehara, T. Yorita, M. Yosoi and R.G.T. Zegers, a Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka , Japan b Department of Physics, Pusan National University, Pusan , Korea c Department of Physics, Konan University, Kobe, Hyogo , Japan d Japan Atomic Energy Research Institute, Mikazuki, Hyogo , Japan e Institute of Physics, Academia Sinica, Taipei 11529, Taiwan f Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo , Japan h School of physics, Seoul National University, Seoul, Korea i Department of Physics, Ohio University, Athens, Ohio 45701, USA j Department of Physics, Kyoto University, Kyoto, Kyoto , Japan k Laboratory of Nuclear Science, Tohoku University, Sendai , Japan l Department of Physics, Yamagata University, Yamagata, Yamagata , Japan m Department of Physics, Chiba University, Chiba, Chiba , Japan n Wakayama Medical College, Wakayama, Wakayama , Japan o Department of Physics, Nagoya University, Nagoya, Aichi , Japan p Department of Physics, Osaka University, Toyonaka, Osaka , Japan q Department of Physics, University of Saskatchewan, Saskatoon, S7N 5E2, Canada r Department of Applied Physics, Miyazaki University, Miyazaki , Japan

Photon asymmetry -difference between  and     

Photon asymmetry -energy dependence E  (GeV)   