T violation search in K decays using stopped K + J. Imazato IPNS, KEK Workshop on Physics at an Upgraded Fermilab Proton Driver Workshop October 8, 2004.

Slides:



Advertisements
Similar presentations
A Parasitic search for a muon EDM to 10 -xx e-cm using tracking Brendan Casey, Fermilab New (g-2) Collaboration Meeting 3/19/2011.
Advertisements

Result of T-violating Muon Polarization Measurement in the K + →  0  + Decay C. Rangacharyulu Saskatoon, SK for the KEK-E246 collaboration June 7, ‘04.
Ozgur Ates Hampton University TREK Experiment “Tracking and Baseline Design” And OLYMPUS Experiment “Study of Systematics” 1.
Francisco Antonio Physics 129 November 23, 2010 Li Zhengdao and Yang Zhenning, 1953.
June 9, Tetsuro Sekiguchi, KEK BNL-E949 Collaboration The E949 experiment The analysis The results Conclusions BNL, FNAL, UNM, Stony Brook Univ.
PHENIX Decadal Plan o Midterm upgrades until 2015 o Long term evolution after 2015 Dynamical origins of spin- dependent interactions New probes of longitudinal.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
July 2001 Snowmass A New Measurement of  from KTeV Introduction The KTeV Detector  Analysis of 1997 Data Update of Previous Result Conclusions.
J. Whitmore BEACH 2004 June 30, 2004 KTeV Results: K L    ( =e, , ) BEACH 2004 June 30, 2004 Julie Whitmore, Fermilab l Physics Motivation - Direct.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Progress on the final TWIST measurement of James Bueno, University of British Columbia and TRIUMF on behalf of the Triumf Weak Interaction Symmetry Test.
1 Measurement of f D + via D +   + Sheldon Stone, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K- K+K+ “I charm you, by my once-commended.
SUSY small angle electron tagging requirements Philip Bambade LAL-Orsay MDI workshop - SLAC 6-8 January 2005 With M. Berggren, F. Richard, Z. Zhang + DESY.
B Production and Decay at DØ Brad Abbott University of Oklahoma BEACH 2004 June 28-July 3.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
Search for R-parity violating Supersymmetric effects in the neutron beta decay N. Yamanaka (Osaka University) 2009 年 8 月 12 日 at KEK In collaboration with.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
Search for CP violation in  decays R. Stroynowski SMU Representing CLEO Collaboration.
TWIST Measuring the Space-Time Structure of Muon Decay Carl Gagliardi Texas A&M University TWIST Collaboration Physics of TWIST Introduction to the Experiment.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
Polarimetry of Proton Beams at RHIC A.Bazilevsky Summer Students Lectures June 17, 2010.
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
Beijing, Feb 3 rd, % e+ Poalarization 1 Physics with an initial positron polarisation of ≈30% Sabine Riemann (DESY)
P10-2: Exclusive Study on the  N Weak Interaction in A=4  -Hypernuclei (update from P10) S. Ajimura (Osaka Univ.) Osaka-U, KEK, OsakaEC-U, RIKEN, Seoul-U,
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
Irakli Chakaberia Final Examination April 28, 2014.
Status of E391a Search for K L    decay G.Y.Lim IPNS, 32nd ICHEP 19 th August 2004 Beijing.
TWIST A Precision Measurement of Muon Decay at TRIUMF Peter Kitching TRIUMF/University of Alberta TWIST Collaboration Physics of TWIST Introduction to.
1 Polarimeter for dEDM experiment G. Venanzoni Laboratori Nazionali di Frascati for the dEDM collaboration Workshop on Flavour in the era of LHC – Cern.
A Trek to TREK * Hampton University & Jefferson Lab, Virginia, USA 2010 Fall Meeting of the APS Division of Nuclear Physics, Nov. 2-6, 2010, Santa Fe,
Search for New Physics via η Rare Decay Liping Gan University of North Carolina Wilmington Wilmington, NC, USA.
PHENIX Local Polarimeter PSTP 2007 at BNL September 11, 2007 Yuji Goto (RIKEN/RBRC)
Latest Physics Results from ALEPH Paolo Azzurri CERN - July 15, 2003.
Ю.Г. Куденко 1 Редкие распады каонов Дубна, 12 мая 2004 Вторые Марковские чтения Дубна-Москва, мая 2004 г. Институт ядерных исследований РАН CKM.
Trilinear Gauge Couplings at TESLA Photon Collider Ivanka Božović - Jelisavčić & Klaus Mönig DESY/Zeuthen.
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
Neutral Current Deep Inelastic Scattering in ZEUS The HERA collider NC Deep Inelastic Scattering at HERA The ZEUS detector Neutral current cross section.
1 Progress Report to PAC3 J-PARC E06 Experiment (TREK) Measurement of T-violating Transverse Muon Polarization (P T ) in K + →     Decays J. Imazato.
EXPERIMENT INR/IHEP Protvino-Moscow, Russia Viacheslav Duk INR RAS QUARKS 2006 Rare Kaon Decays
Measurement of Vus. Recent NA48 results on semileptonic and rare Kaon decays Leandar Litov, CERN On behalf of the NA48 Collaboration.
Yasuhiro Okada (KEK) February 4, 2005 at KEK
Proton Charge Form Factor Measurement E. Cisbani INFN Rome – Sanità Group and Italian National Institute of Health 113/Oct/2011E. Cisbani / Proton FF.
Result of T-violating Muon Polarization Measurement in the K + →  0  + Decay J. Imazato IPNS, KEK for the KEK-E246 collaboration March 21, 2004 XXXIXth.
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
Douglas Bryman University of British Columbia Seeking New Physics with Rare Decays Early Adventures at TRIUMF and Future Prospects JMP Retirement Symposium.
Douglas Bryman University of British Columbia APS May 3, 2011.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
RECENT RESULTS FROM THE TEVATRON AND LHC Suyong Choi Korea University.
Measurement of T-violating Transverse Muon Polarization in  + →     Decays at J-PARC Suguru SHIMIZU Osaka University Oct. 6, 2006 SPIN2006.
Oct. 12, 2007 Imran Younus k T Asymmetry in Longitudinally Polarized p +p Collisions at PHENIX.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Deuteron polarimetry from 1.0 to 1.5 GeV/c Ed Stephenson, IUCF EDM discussion April 14, 2006 Based on work from: France:POMME B. Bonin et al. Nucl. Inst.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
Updated sensitivity estimate Suguru Shimizu Osaka University Sep. 1, 2007 JPARC TREK Collaboration meeting at Saskatchewan (1)Statistical error (2)Systematic.
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
K. Holubyev HEP2007, Manchester, UK, July 2007 CP asymmetries at D0 Kostyantyn Holubyev (Lancaster University) representing D0 collaboration HEP2007,
International Committee for Spin Physics Symposia XIII WORKSHOP ON HIGH ENERGY SPIN PHYSICS Dubna, Russia September 1 - 5, 2009 AZIMUTHAL ASYMMETRIES IN.
Measurement of direct photon emission in K+ →π+π0γ ---Spectroscopic studies for various K+ decay channels --- S. Shimizu for the KEK-PS E470 collaboration.
for the E06(TREK) collaboration
The New CHOD detector for the NA62 experiment at CERN S
The η Rare Decays in Hall D
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Plans for nucleon structure studies at PANDA
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Search for New Physics via η Rare Decay
University of Tsukuba, Japan Particle Physics Phenomenology,
KEK, 阪大RCNPA, 阪大理B, 京大理C, 原研先端研D,
SUSY SEARCHES WITH ATLAS
Presentation transcript:

T violation search in K decays using stopped K + J. Imazato IPNS, KEK Workshop on Physics at an Upgraded Fermilab Proton Driver Workshop October 8, Transverse muon polarization in K +  2. KEK E246 experiment 3. Future experiments 4. J-PARC experiment

Transverse muon polarization in K + →  0  + K  3 decay form factors and T violation History of K  3 transverse polarization experiments K L →  −  + Bevatron 1967 Im  = ±0.08 K L →  −  + Argonne 1973 Im  = ±0.064 K L →  −  + BNL-AGS 1980 Im  = ±0.030 K + →  0  + BNL-AGS 1983 Im  = ±0.025 K + →  0  +  KEK-E Im  = ± ± P T spurious ( Final State Interaction )= very small T-odd correlation

Features of K +  P T ■ Small standard model contribution – Bigi and Sanda “CP violation” (2000) – P T ~ ■ Small FSI spurious effects –Single photon contribution Zhitnitskii (1980) P T < ~ –Two photon contribution Efrosinin et al. PL B493 (2000) 293 P T ~ 4 x ■ High sensitivity to CP violation beyond the SM – Mult- Higgs doublet model – Leptoquark model – Some Supersymmetric models P T ~ Three Higgs doublet model SM FSI (example)

 Higgs doublet model L = (2√(2)G F ) 1/2  [  i U L KM D D R +  i U R M U KD L +  i N L M E E R ] H i + + h.c.    flavor conservation Im  = Im(  1  1 * ) × (m K / m H + ) 2 = Im(  1  1 * ) × ( v 2 /v 3 ) 2 × (m K / m H + ) 2 v i : vacuum expectation values  i,  i,  i : mixing matrix elements Only schematic K  P T v 2 /v 3 Im(  1  1 * ) Im(     *) (v 2 /v 3 ) 2 / M H 2 = 4.1×Im  GeV -2 

3HDM : constraints from other experiments Neutron EDM (charged Higgs exchange) d n =C n Im(  1  1 *) < 0.63 x e cm ⇨ Im(  1  1 *) < ~10 b→s  A = A SM + A 3HDM (     *) ⇨ Im(     *) ≦ 3.2 (for m H ~2m Z ) [Grossman and Nir (1993), Kiers et al.(2000)]             but  stringent constraint b→X  A = A SM + A 3HDM (     *) Im(  i  i *)=Im(     *) (v 2 /v 3 ) 2 < 7400 (for m H ~2m Z ) [Grossman, Haber and Nir (1995)] c.f. P T : Im(     *) (v 2 /v 3 ) 2 = 1.36 ×10 5 Im  (for m H ~2m Z ) For v 2 /v 3 > ~ 10, P T is the most stringent constraint on 3HDM [Garisto and kane (1991)]

Other models Charged Higgs exchange Constraints on M H +  =tan  (  +A t cot  )/m g~ × Im[V 33 H+* V 32 D L * V 31 U R ] slepton exchange + down-type squark exchange Constraints on M Im[ 2i2 ( ’ i12 ) * ] and Im[ ’ 21k ( ’ 22k ) * ] scalar leptoquark exchange Constraints on k 2 /M  k 2

R- parity violating SUSY W = W MSSM + W RPV __ __ __ __ __ W RPV = ijk L i L j E k + ’ ijk L i Q j D k + ” Ijk U i D j D k L i, Q i : lepton and quark doublet superfield E i, D i, U i : electron, down- and up-quark singlet superfield Constraint from Im  on Im[ 2i2 ( ’ i12 ) * ]/M 2 and Im[ ’ 21k ( ’ 22k ) * ]/M 2 Constraint on from Im  E246) Im[ 2i2 ( ’ i12 ) * ] and Im[ ’ 21k ( ’ 22k ) * ]  ×  M=100 GeV  while constraint from other experiments : ≤ 4 × 10 M=100 GeV

P T (K + →    no SM contribution, but induced by pseudoscalar interactions complementary to P T (K→  [Kobayashi et al. (1996)] FSI is not large : O(10 -4 ) [Efrosinin and Kudenko (1999), Hiller and Isidori (1999)] Model K +   0  + K +   +  ■ Standard Model <10 -7 <10 -7 ■ Final State Interactions <10 -5 <10 -3 ■ Multi-Higgs   P T (K +   0  + )  2 P T (K +   0  +  ) ■ SUSY with sqarks mixing   3x10 -3 ■ SUSY with R-parity breaking  4x10 -4  3x10 -4 ■ Leptoquarks   5x10 -3 E246 : P T = ± (stat) ± (syst) Phys. Letters B561, 166 (2003) P T = ± (stat) ± (syst)

KEK E246 experiment Japan ● KEK ● Univ. of Tsukuba, ● Tokyo Institute of Technology ● Univ. of Tokyo ● Osaka Univ. Russia ● Institute for Nuclear Research Canada ● TRIUMF ● Univ. of British Columbia ● Univ. of Saskatchewan ● Univ. of Montreal Korea ● Yonsei Univ. ● Korea Univ. U.S.A. ● Virginia Polytech Institute ● Princeton Univ. Taiwan ● National Taiwan Univ.

E246 experimental setup using stopped K + End viewSide view [J.Macdonald et al.; NIM A506 (2003) 60] K + →  0  +

E246 muon polarimeter Cross section One-sector view y(cm) B

Double ratio measurement CsI barrel fwd and bwd  0 /  P T directions fwd -    bwd -    Double ratio measurement 768 A fwd - A bwd A T = 2

E246 result and model implication P T = ± (stat) ± (syst) ( |P T | < : 90% C.L. ) Im  = ± (stat) ± (syst) ( |Im  | <0.016 : 90% C.L. ) [M.Abe et al., Phys. Rev. Letters 93 (2004) ] Three Higgs doublet model |Im  | < (90% C.L.) ⇒ Im(  1  1 * ) < 2176 (at m H =2m Z ) cf. BR (B→X   ) ⇒ Im(  1  1 * ) < 7400 (at m H =2m Z ) [R.Garisto and G.Kane, Phys. Rev. D44 (1991)2789] v 2 / v 3 = m t /m  d n ~ 4/3 d d ∝ Im(  1  1 * ) × m d / m H 2 |Im  | < (90% C.L.) ⇒ d n < 5 × e cm cf. d n exp < 6.3× e cm KLKL K+K+

Systematic errors Source of Error  12fwd/bwd  P T x 10 4 e + counter r-rotationxo0.5 e + counter z-rotationxo0.2 e + counter f-offsetxo2.8 e + counter r-offsetoo<0.1 e + counter z-offsetoo<0.1  + counter f-offsetxo<0.1 MWPC  -offset (C4)xo2.0 CsI misalignmentoo1.6 B offset (  )xo3.0 B rotation (  x )xo0.4 B rotation (  z )xx5.3 K + stopping distributionoo<3.0  + multiple scatteringxx 7.1 Decay plane rotation (  r )xo1.2 Decay plane rotation (  z )xx0.7 K  2 DIF backgroundxo0.6 K + DIF backgroundox< 1.9 Analysis--3.8 Total11.4  12 : 12-fold rotational cancellation fwd/bwd :  0 forward/backward cancellation

Stopped K + vs. in-flight decay method stopped K + method in-flight-decay method Example E246 old BNL experiment K + beam momentum low p for stopping high p K + beam intensity low high Decay kinematics isotropic boosted forward  0 detection all directions only forward decay? Sensitive region to P T possible not always Kinematic resolution good poor Double ratio exp. possible difficult

 + polarization measurement for K  3 P T Method longitudinal field transverse field Configuration Observable Experiment E246 old BNL experiment Relative sensitivity 1 1/√2 Systematic error double ratio B field reverse reduction A T, -A T  t+  T, -  t+  T Matching with stopped K + good good Systematic error small ● error due to B reverse ● t 0 calibration necessary

Future T violation experiment and sensitivity limitations ■ Methodology : Stopped K + method rather than an in-flight decay experiment Double ratio measurement in the decay kinematic space Longitudinal field on the P T component ■ Desirable detector : Large K  3 acceptance Simultaneous K  P T measurement Small instrumental systematic errors ■ Sensitivity goal : E246 :  P T stat (E246) >  P T syst (E246) Future experiment (FE) :  P T syst (FE) ~ 1/10  P T syst (E246) ~  P T stat (FE) ~  P T syst (FE) ~  P T syst (FE) ~ might be feasible, but  P T syst (FE) ~ will be vey difficult.

E246 upgrade at J-PARC ? E246 was statistically limited. ■ Polarimeter field by a new magnet Parallel holding field of P T Precise field distribution alignment reduction of the most serious systematic error ■ Active polarimeter 4  solid angle for decay positron Energy and angle of measurements of positrons FoM =  √  = 3.8 x E246 ■ Upgrade of readout electronics Rate performance = 10 x E246 under the condition of K/  >>1 Merit Lower cost than a completely new setup Well known detector performance and systematics

Expectation for E246-upgrade Gain from E246 Polarimeter : 3.8 Beam intensity : √10 Run time : √0.66 Total = 9.8 Statistical error :  P T = 3.0 x Systematic errors  Total error  P T syst ~ 10 -4

New detector proposal at J-PARC To go down below 10 -4, we need a new detector. ■ Experiment principle stopped kaons double ratio detector azimuthal symmetry complete reconstruction of kinematics ■ Detector concept larger  + acceptance high resolution  0 measurement active polarimeter photon veto to measure K  ■ Most important requirement suppression of systematic errors to the level

J-PARC proposal L-19 Large solenoid ■ Field parameters Strength : 1-3 kG Alignment+symmetry :  over 1m Field measurement with a rotating coils Allowed stray field : 100 mG Use of the field for  + and e + tracking K + -->     :  P T    :  P T ~10 -4 ■ Detector components Target  calorimeter Pre-shower counter  + tracker Polarimeter  veto counters Large solenoid

Vector correlation At J-PARC Higher beam rate Different conditions for up- and down-stream side Double ratio between left -going  0 and right-going  0

Symmetrization of K + stopping distribution z ■ Adjustment of null asymmetry A 0 = ( A left + A right )/2 N(z K )=symmetric => A 0 = 0 N(z K )=asymmetric=> A 0 ≠0 ■ A T = ( A left - A right )/2 No effect in A T from asymmetric z- distribution due to left-right cancellation but unknown higher order systematics Artificial z- symmetrization by using tracker ===> A 0 = 0  0 - L/R scheme ==> e + - F/B asymmetry measurement

Effects of magnetic field on polarization Cancellation between +  and -  Null asymmetry check Cancellation between left and right Presence of B field has no influence on the validity of experiment Same situation as in the zero field case z=0

Active polarimeter ■ Measurement of Muon stopping position Positron emission direction Positron energy Electromagnetic shower ■ location ■ energy deposit ■ Analysis Michel spectrum ■ Problem of use of plastics formation of muonium muon spin depolarization B=3kG enough for decoupling? Better choice will be muon tubes made of Al k k a system with the highest sensitivity to polarization

Rejection of K  2 background  +   < 79 o   < 39 o Optimization of K  2 background rejection by Opening angle cuts, and X-parameter cut on photon spectrum X= (E  1 -E  2 )/ (E  1 +E  2 ) K  2 was a significant background in E246..

Instrumental systematics Most dangerous systematics will be instrumental misalignments magnet   calorimeter Cancellation by azimuthal integration spurious  P T decay plane rotation

Sensitivity for  K   P T FoM =  √  Run time 1 = 10 7 s Loi-19 estimate based on fwd/bwd scheme _ 10 -5

Estimate of K  P T sensitivity 1. Photon energy 20 – 200 MeV 2. Muon energy  200 MeV 3.    120 O Acceptance per K +  0.7 x N( K +   +  )  0.7 x Statistical sensitivity :  P T (1  )  0.7 x (estimate based on F/B scheme)

Kaon beam K0.8 at T1 target In Phase 1 for stopped K +/- beam T2 target in Phase2 p= 650~800 MeV/c K/  > 1 with two DCS’s  p/p < 3% K + intensity =10 6 ~ 10 7 /s low p kaon line

K + beam for stopped K + experiments K + stop = I p  K + (E p )  C T(p K )  stop (p K ) I p : proton beam intensity  K +(E p ) : K + production rate at E p ↑with E p  C : channel acceptance T(p K ) : channel transmission↑with p K  stop (p K ): stopping efficiency↓with p K K + /  + ratio ↓with p K Optimum p E p =12 GeV (E246) : 650 MeV/c with one E p = GeV (J-PARC) : 650~800 MeV/c longer channel with two DCS’s  K + (E p ) : nearly constant with E p in the relevant E p region for p K = 650~800 MeV/c consideration on optimum beam momentum

Summary ■ Transverse muon polarization P T is a clean and very sensitive probe of new physics. ■ KEK-E246 has recently improved the limit of P T and Im . ■ Future experiments aiming for  P T ~10 -4 will be important and desired. ■ The experiment at J-PARC using a stopped beam will be very promising: K +   0  +  P T <10 -4 K +   +   P T ~ 10 -4