Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry.

Slides:



Advertisements
Similar presentations
第十届 QCD 相变与相对论重离子物理研讨会, August Z. Zhang,
Advertisements

Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Zhao Zhang ( Kyoto University ) Vector-vector interaction, Charge neutrality and the number of QCD critical points contents  Introduction to QCD phase.
Axial symmetry at finite temperature Guido Cossu High Energy Accelerator Research Organization – KEK Lattice Field Theory on multi-PFLOPS computers German-Japanese.
A Chiral Random Matrix Model for 2+1 Flavor QCD at Finite Temperature and Density Takashi Sano (University of Tokyo, Komaba), with H. Fujii, and M. Ohtani.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
QCD – from the vacuum to high temperature an analytical approach.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Heavy-quark Potential by AdS/CFT and Color SuperCond. in Dense QCD 侯德富 华中师范大学粒子物理研究所 十三届中高能核物理大会,合肥.
Vivian de la Incera University of Texas at El Paso THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER.
Ferromagnetic properties of quark matter a microscopic origin of magnetic field in compact stars T. Tatsumi Department of Physics, Kyoto University I.Introduction.
Ferromagnetism in quark matter and origin of magnetic field in compact stars Toshitaka Tatsumi (Kyoto U.) (for a recent review, hep-ph/ ) I. Introduction.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
INSTANTON AND ITS APPLICATION Nam, Seung-il Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan YITP, Kyoto University YITP Lunch.
Discovery of the Higgs Boson Gavin Lawes Department of Physics and Astronomy.
Chiral symmetry breaking in dense QCD
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
「第5回 J-PARC における高エネルギーハドロン物理」 J-PARC に活きる南部先生のアイデア 1.Introdution 2.Stability of hadronic matter 3. Chiral symmetry in vacuum & in medium 4. No summary.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Higgs Mechanism at Finite Chemical Potential with Type-II Nambu-Goldstone Boson Based on arXiv: v2 [hep-ph] Yusuke Hama (Univ. Tokyo) Tetsuo Hatsuda.
Yusuke Hama (Univ. Tokyo) Collaborators Tetsuo Hatsuda (Univ. Tokyo)
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) arXiv: Some preliminary results 2015 HaPhy-HIM Joint meeting Kie.
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Some Topics on Chiral Transition and Color Superconductivity Teiji Kunihiro (YITP) HIM Nov. 4-5, 2005 APCTP, Pohang.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Two topics on dense quark matter
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
Thermal phase transitions in realistic dense quark matter
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
IRGAC 2006 COLOR SUPERCONDUCTIVITY and MAGNETIC FIELD: Strange Bed Fellows in the Core of Neutron Stars? Vivian de la Incera Western Illinois University.
Vivian de la Incera University of Texas at El Paso DENSE QUARK MATTER IN A MAGNETIC FIELD CSQCD II Peking University, Beijing May 20-24, 2009.
カラー超伝導における 非アーベルボーテックスのフェルミオン 構造 安井繁宏 (KEK) in collaboration with 板倉数記 (KEK) and 新田宗土 ( 慶應大学 ) 08 Jun. 東京大学松井研究室 Phys. Rev. D81, (2010)
1 Pairings in quark-baryonic matter Qun Wang University of Science and Technology of China  Introduction  CSC: from weak to strong couplings  Boson-fermion.
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
1 Color Superconductivity: CFL and 2SC phases  Introduction  Hierarchies of effective lagrangians  Effective theory at the Fermi surface (HDET)  Symmetries.
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
The axial anomaly and the phases of dense QCD
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
QCD 相転移における秩序変数 揺らぎとクォークスペクトル 根本幸雄 ( 名古屋大 ) with 北沢正清 ( 基研 ) 国広悌二 ( 基研 ) 小出知威 (Rio de Janeiro Federal U.)
Lattice QCD at finite density
Cosmological constant Einstein (1917) Universe baryons “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Raju Venugopalan Brookhaven National Laboratory
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
Precursory Phenomena in Chiral Transition and Color Superconductivity
Chiral phase transition in magnetic field
Ginzburg-Landau approach to QCD phase transitions
Strangeness and charm in hadrons and dense matter, YITP, May 15, 2017
Color Superconductivity: CFL and 2SC phases
Color Superconductivity in dense quark matter
Spontaneous P-parity breaking in QCD at large chemical potentials
Chengfu Mu, Peking University
Teiji Kunihiro (Kyoto) In collaboration with
QCD at very high density
Presentation transcript:

Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry breaking Partition function zeros and chiral symmetry breaking Summary & Outlook (1) T. Hatsuda, M. Tachibana, N.Y. and G. Baym, Phys. Rev. Lett. 97 (2006) (2) N.Y., JHEP 0812 (2008) 060. (3) N.Y. and T. Kanazawa, Phys. Rev. Lett. 103 (2009) KEK 理論センター研究会「原子核・ハドロン物理」

QCD phase diagram T  Quark-Gluon Plasma Hadrons RHIC/LHC CFL Color superconductivity quark matter Neutron star

Color Superconductivity  QCD at high density → asymptotic free Fermi surface  Attractive channel → Cooper instability [3] C ×[3] C =[6] C +[3] C E p μ q q 3 “diquark condensate” “Fermi sea” “Dirac sea”

Color-Flavor Locking (CFL) u d s r,g,br,g,bu,d,s  Pairing channel s-wave pairing, spin singlet → Dirac antisymmetric Attractive channel → color antisymmetric Pauli principle → flavor antisymmetric U(1) A anomaly → Lorentz scalar  3-flavor limit: Color-Flavor Locking (CFL) Alford-Rajagopal-Wilczek (NPB1999)  Gauge-invariant order parameter e.g.)  Symmetry breaking pattern:

CFL is positive parity ... due to the presence of U(1) A anomaly.  Consider the Kobayashi-Maskawa-’t Hooft (KMT) vertex with quark mass:  V KMT is minimized when and the positive parity state is energetically favored. Alford-Rajagopal-Wilczek (NPB1999) Kobayashi-Maskawa (PTP1970); ‘t Hooft (PRD1976) G G T. Schafer (PRD2002)

Chiral symmetry breaking in CFL  The chiral condensate:  Exactly calculated thanks to the screening of instantons at high μ: [Point] 1.Chiral symmetry is broken not only by the diquark condensate but also the chiral condensate in CFL. 2.Nonzero chiral condensate in CFL is model-independent. 3.Chiral-super interplay of the type is inevitable. Alford-Rajagopal-Wilczek (NPB1999) T. Schafer (PRD2002); NY (JHEP2008)

Possible phase structure I  Anomaly-induced critical point at high μ. Hatsuda-Tachibana-NY-Baym (PRL2006)  A realization of quark-hadron continuity. Schafer-Wilczek (PRL1999)  Critical point(s) of other origins. Kitazawa-Koide-Kunihiro-Nemoto (PTP2002); Zhang-Fukushima-Kunihiro (PRD2009); Zhang-Kunihiro, arXiv: T  Quark-Gluon Plasma Hadrons Color superconductivity

Possible phase structure III  Is there this possibility? [see also Hidaka-san’s talk] T  Quark-Gluon Plasma Hadrons CFL quark matter

Phase diagram of “instantons” (N f =3) T  “instanton liquid” “instanton molecule” “ instanton gas“  Chiral phase transition at high μ: instanton-induced crossover. 4-dim. generalization of Kosterlitz-Thouless transition. NY (JHEP2008)

Another viewpoint: Lee-Yang zeros  The partition function zeros in the complex plane at V<∞ reflects the information of the chiral condensate at V=∞:  Nonzero chiral condensate at V=∞ requires a cut through m=0. Halasz-Jackson-Verbaarschot (PRD97) [Lee-Yang zeros at μ=0] Leutwyler-Smilga (PRD92)

Predictions of Random Matrix Theory (RMT) Halasz-Jackson-Verbaarschot (PRD97); Halasz, et al. (PRD98)  RMT predictions: 1.Chiral symmetry restores at μ=μ c. 2.The cut will move away from origin as μ increases. → Is it consistent with the chiral symmetry breaking at high μ? [Random Matrix Theory → Ohtani-san’s talk]

Finite-volume QCD at high density  QCD in a large but finite torus:  ε-regime:  Elementary excitations in CFL; 9 quarks: mass gap~Δ due to the color superconductivity. 8 gluons: mass gap~Δ due to the Higgs mechanism. 8+1(+1) Nambu-Goldstone (NG) modes: nearly (or exactly) massless.  In ε-regime, Non-NG modes negligible since. Kinetic terms of NG modes negligible. NY-Kanazawa (PRL2009)

Partition functions in ε-regime  Chiral Lagrangian at high μ (flavor-symmetric): Son-Stephanov (PRD2000)  Exact partition function at high μ: a novel correspondence between hadronic phase and CFL phase related to quark-hadron continuity!  Dirac spectrum... at μ=0. at high μ. NY-Kanazawa (PRL2009)

Exact Lee-Yang zeros at high density  Asymptotic partition function and Lee-Yang zeros at μ=∞:  Chiral condensate vanishes at μ=∞.  However, many Lee-Yang zeros exist near origin even at high μ and the chiral condensate can be nonzero for μ<∞. NY-Kanazawa (PRL2009)

1.Phases in dense QCD The U(1) A anomaly (or instanton) plays crucial role. Non-vanishing chiral condensate even at high μ. Chiral-super interplay is inevitable. Possible critical point(s) in dense QCD. 2.Partition function zeros in dense QCD Exact X-shaped cut in the complex mass plane at μ=∞. Chiral condensate can be nonzero for μ<∞. 3.Future problems Phases at lower or intermediate densities? Anomaly-induced interplay in NJL. Baym-Hatsuda-NY, in progress. Confinement-deconfinement transition? Microscopic understanding based on QCD? Summary & Outlook

Back up slides

Chiral vs. Diquark condensates E p pFpFpFpF -p F  Diquark condensate  Chiral condensate Y. Nambu (‘60)

Hadrons (3-flavor) SU(3) L ×SU(3) R → SU(3) L+R Chiral condensate NG bosons (π etc) Vector mesons (ρ etc) Baryons Color-flavor locking SU(3) L ×SU(3) R ×SU(3) C ×U(1) B → SU(3) L+R+C Diquark condensate NG bosons Gluons Quarks Phases Symmetry breaking Order parameter Elementary excitations quark-hadron continuity Continuity between hadronic matter and quark matter (color-flavor locking) Conjectured by Schäfer & Wilczek, PRL 1999

Instantons and chiral symmetry breaking Why instanton? : mechanism for chiral symm. breaking/restoration T=0T>T c “instanton liquid” (metal) “instanton molecule” (insulator) Schäfer-Shuryak, Rev. Mod. Phys. (‘97) See, e.g., Hell-Rößner-Cristoforetti-Weise, arXiv: nonlocal NJL model  Origin of NJL model:  Then, χSB in dense QCD from instantons?

 Dense QCD : U(1) A is asymptotically restored. Low-energy dynamics in dense QCD convergent!  Low-energy effective Lagrangian of η ’ Manuel-Tytgat, PL(‘00) Son-Stephanov-Zhitnitsky, PRL(‘01) Schäfer, PRD(‘02)

Coulomb gas representation  : topological charge  : 4-dim Coulomb potential  Instanton density, topological susceptibility  Witten-Veneziano relation :

Renormalization group analysis  Fluctuations :  Change of potential after RG :  RG trans. : RG scale : kinetic vs. potential  D = 2 : potential irrelevant → vortex molecule phase potential relevant → vortex plasma phase  D ≧ 3 : potential relevant → plasma phase

Phase transition induced by instantons  Unpaired instanton plasma in dense QCD →Coexistence phase:  Actually, System parameter αTopological excitationsOrder of trans. 2D O(2) spin systemvortex2nd 3D compact QED magnetic monopolecrossover 4D dense QCD instantoncrossover D-dim sine-Gordon model : Note: weak coupling QCD :

Color superconductivity at large N c  qq scattering Double-line notation ★ Diquarks are suppressed at large N c ! Deryagin-Grigoriev-Rubakov (‘92) Shuster-Son (‘00) Ohnishi-Oka-Yasui (‘07)

0 ≾ m u,d <m s ≪ ∞ (realistic quark masses) Realistic QCD phase structure? 2nd critical point Critical point Asakawa & Yazaki, 89 m u,d,s = 0 (3-flavor limit)m u,d = 0, m s =∞ (2-flavor limit) ≿≿ T μ T μ T μ Hatsuda, Tachibana, Yamamoto & Baym 06

Possible phase structure II T  Quark-Gluon Plasma Hadrons Color superconductivity  Of course, 1st order chiral phase transition at T=0 is still possible.