Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
©rlc L05-28Jan20112 First Assignment to –In the body of the message include subscribe EE5342 This will subscribe you to the EE5342 list. Will receive all EE5342 messages If you have any questions, send to with EE5342 in subject line.
©rlc L05-28Jan20113 Second Assignment Submit a signed copy of the document that is posted at
©rlc L05-28Jan20114 Classes of semiconductors Intrinsic: n o = p o = n i, since N a &N d << n i =[N c N v exp(E g /kT)] 1/2,(not easy to get) n-type: n o > p o, since N d > N a p-type: n o < p o, since N d < N a Compensated: n o =p o =n i, w/ N a - = N d + > 0 Note: n-type and p-type are usually partially compensated since there are usually some opposite-type dopants
©rlc L05-28Jan20115 Equilibrium concentrations Charge neutrality requires q(p o + N d + ) + (-q)(n o + N a - ) = 0 Assuming complete ionization, so N d + = N d and N a - = N a Gives two equations to be solved simultaneously 1. Mass action, n o p o = n i 2, and 2. Neutralityp o + N d = n o + N a
©rlc L05-28Jan20116 For N d > N a >Let N = N d -N a, and (taking the + root) n o = (N)/2 + {[N/2] 2 +n i 2 } 1/2 For N d+ = N d >> n i >> N a we have >n o = N d, and >p o = n i 2 /N d Equilibrium conc n-type
©rlc L05-28Jan20117 For N a > N d >Let N = N d -N a, and (taking the + root) p o = (-N)/2 + {[-N/2] 2 +n i 2 } 1/2 For N a- = N a >> n i >> N d we have >p o = N a, and >n o = n i 2 /N a Equilibrium conc p-type
©rlc L05-28Jan20118 Position of the Fermi Level E fi is the Fermi level when n o = p o E f shown is a Fermi level for n o > p o E f < E fi when n o < p o E fi < (E c + E v )/2, which is the mid- band
©rlc L05-28Jan20119 E F relative to E c and E v Inverting n o = N c exp[-(E c -E F )/kT] gives E c - E F = kT ln(N c /n o ) For n-type material: E c - E F =kTln(N c /N d )=kTln[(N c P o )/n i 2 ] Inverting p o = N v exp[-(E F -E v )/kT] givesE F - E v = kT ln(N v /p o ) For p-type material: E F - E v = kT ln(N v /N a )
©rlc L05-28Jan E F relative to E fi Letting n i = n o gives E f = E fi n i = N c exp[-(E c -E fi )/kT], so E c - E fi = kT ln(N c /n i ). Thus E F - E fi = kT ln(n o /n i ) and for n- typeE F - E fi = kT ln(N d /n i ) Likewise E fi - E F = kT ln(p o /n i ) and for p- type E fi - E F = kT ln(N a /n i )
©rlc L05-28Jan Locating E fi in the bandgap Since E c - E fi = kT ln(N c /n i ), and E fi - E v = kT ln(N v /n i ) The sum of the two equations gives E fi = (E c + E v )/2 - (kT/2) ln(N c /N v ) Since N c = 2.8E19cm -3 > 1.04E19cm -3 = N v, the intrinsic Fermi level lies below the middle of the band gap
©rlc L05-28Jan Sample calculations E fi = (E c + E v )/2 - (kT/2) ln(N c /N v ), so at 300K, kT = meV and N c /N v = 2.8/1.04, E fi is 12.8 meV or 1.1% below mid-band For N d = 3E17cm -3, given that E c - E F = kT ln(N c /N d ), we have E c - E F = meV ln(280/3), E c - E F = eV =117meV ~3x(E c - E D ) what N d gives E c -E F =E c /3
©rlc L05-28Jan Equilibrium electron conc. and energies
©rlc L05-28Jan Equilibrium hole conc. and energies
©rlc L05-28Jan Carrier Mobility In an electric field, E x, the velocity (since a x = F x /m* = qE x /m*) is v x = a x t = (qE x /m*)t, and the displ x = (qE x /m*)t 2 /2 If every coll, a collision occurs which “resets” the velocity to = 0, then = qE x coll /m* = E x
©rlc L05-28Jan Carrier mobility (cont.) The response function is the mobility. The mean time between collisions, coll, may has several important causal events: Thermal vibrations, donor- or acceptor-like traps and lattice imperfections to name a few. Hence thermal = q thermal /m*, etc.
©rlc L05-28Jan Carrier mobility (cont.) If the rate of a single contribution to the scattering is 1/ i, then the total scattering rate, 1/ coll is
©rlc L05-28Jan Drift Current The drift current density (amp/cm 2 ) is given by the point form of Ohm Law J = (nq n +pq p )(E x i+ E y j+ E z k), so J = ( n + p )E = E, where = nq n +pq p defines the conductivity The net current is
©rlc L05-28Jan Drift current resistance Given: a semiconductor resistor with length, l, and cross-section, A. What is the resistance? As stated previously, the conductivity, = nq n + pq p So the resistivity, = 1/ = 1/(nq n + pq p )
©rlc L05-28Jan Drift current resistance (cont.) Consequently, since R = l/A R = (nq n + pq p ) -1 (l/A) For n >> p, (an n-type extrinsic s/c) R = l/(nq n A) For p >> n, (a p-type extrinsic s/c) R = l/(pq p A)
©rlc L05-28Jan References *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.