A robust adaptive clustering analysis method for automatic identification of clusters Presenter : Bo-Sheng Wang Authors: P.Y. Mok*, H.Q. Huang, Y.L. Kwok,

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : KADIM TA¸SDEMIR, PAVEL MILENOV, AND BROOKE TAPSALL 2011,IEEE Topology-Based Hierarchical.
Advertisements

Intelligent Database Systems Lab Presenter: WU, JHEN-WEI Authors: Jorge Gorricha, Victor Lobo CG Improvements on the visualization of clusters in.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Yu Cheng Chen Author: Hichem.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Clustering data in an uncertain environment using an artificial.
Graph-based consensus clustering for class discovery from gene expression data Zhiwen Yum, Hau-San Wong and Hongqiang Wang Bioinformatics, 2007.
Breast Cancer Treatment using Nanomedicine Becca Baldwin East Tennessee State University.
Unsupervised object discovery via self-organisation Presenter : Bo-Sheng Wang Authors: Teemu Kinnunen, Joni-Kristian Kamarainen, Lasse Lensu, Heikki Kälviäinen.
READING A PAPER. Basic Parts of a Research Paper 1. Abstract 2. Introduction to Technology (background) 3. Tools & techniques/Methods used in current.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Human eye sclera detection and tracking using a modified.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Comprehensive Comparison Study of Document Clustering.
1 Webcam Mouse Using Face and Eye Tracking in Various Illumination Environments Yuan-Pin Lin et al. Proceedings of the 2005 IEEE Y.S. Lee.
A progressive sentence selection strategy for document summarization Presenter : Bo-Sheng Wang Authors: You Quyang, Wenjie Li, Renxian Zhang, Qin Lu IPM,
Presenter : Lin, Shu-Han Authors : Jeen-Shing Wang, Jen-Chieh Chiang
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Cube Kohonen Self-Organizing Map (CKSOM) Model
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 AC-ViSOM: Hybridising the Modified Adaptive Coordinate.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Youngjoong Ko, Jungyun Seo 2009, IPM Text classification from unlabeled documents.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 GMDH-based feature ranking and selection for improved.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A fast nearest neighbor classifier based on self-organizing incremental neural network (SOINN) Neuron.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
1 Mining the Web to Determine Similarity Between Words, Objects, and Communities Author : Mehran Sahami Reporter : Tse Ho Lin 2007/9/10 FLAIRS, 2006.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Medhdi Khashei, Mehdi Bijari 2011, ASOC A novel hybridization of artificial neural.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extensions of vector quantization for incremental clustering.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Peter Sarlin* 2013.PRL Decomposing the global financial crisis: A Self-Organizing.
Learning Spectral Clustering, With Application to Speech Separation F. R. Bach and M. I. Jordan, JMLR 2006.
Haojun Sun,ShengruiWang*,Qingshan Jiang Received 16 December 2002; received in revised form 29 March 2004; accepted 29 March 2004 Presenter Chia-Cheng.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : CHRISTOS BOURAS, VASSILIS TSOGKAS 2012, KBS A clustering technique for news articles.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology SEP/COP: An efficient method to find the best partition.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Novel Density-Based Clustering Framework by Using Level.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Eghbal G. Mansoori 2011,IEEE FRBC: A Fuzzy Rule-Based Clustering Algorithm.
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : HAI V. PHAM, ERIC W. COOPER, THANG CAO, KATSUARI KAMEI INFORMATION SCIENCES Hybrid.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Kevin Meijer, Flavius Frasincar, Frederik Hogenboom 2014.DSS. A semantic approach.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
A new initialization method for Fuzzy C-Means using Fuzzy Subtractive Clustering Thanh Le, Tom Altman University of Colorado Denver July 19, 2011.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Wen Zhang, Taketoshi Yoshida, Xijin Tang 2011.ESWA A comparative study of TF*IDF,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Validity index for clusters of different sizes and densities Presenter: Jun-Yi Wu Authors: Krista Rizman.
About Me Swaroop Butala  MSCS – graduating in Dec 09  Specialization: Systems and Databases  Interests:  Learning new technologies  Application of.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A new data clustering approach- Generalized cellular automata.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Cost- sensitive boosting for classification of imbalanced.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Learning multiple nonredundant clusterings Presenter :
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: HUAN LONG A, ZIJUN ZHANG A, ⇑, YAN SU 2014, APPLIED ENERGY Analysis of daily solar.
Clustering Algorithms Meta Applier (CAMA) Toolbox Dmitry S. Shalymov Kirill S. Skrygan Dmitry A. Lyubimov.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A survey of kernel and spectral methods for clustering.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Christopher C. Yang and Tobun Dorbin Ng TSMCA Analyzing and Visualizing Web Opinion.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Community self-Organizing Map and its Application to Data Extraction Presenter: Chun-Ping Wu Authors:
Intelligent Database Systems Lab Presenter : JHOU, YU-LIANG Authors : Jae Hwa Lee, Aviv Segev 2012 CE Knowledge maps for e-learning.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Junping Zhang, Hua Huang and Jue Wang IEEE INTELLIGENT SYSTEMS Manifold Learning.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Vittorio Carlei, Massimiliano Nuccio PRL Mapping industrial patterns in spatial agglomeration:
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An Integrated Machine Learning Approach to Stroke Prediction Presenter: Tsai Tzung Ruei Authors: Aditya.
1 Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates Author : Eser Kandogan Reporter : Tze Ho-Lin 2007/5/9 SIGKDD, 2001.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Emilio Corchado, Bruno Baruque 2012 NeurCom WeVoS-ViSOM: An ensemble summarization.
1 A methodology for dynamic data mining based on fuzzy clustering Source: Fuzzy Sets and Systems Volume: 150, Issue: 2, March 1, 2005, pp Authors:
Intelligent Database Systems Lab Presenter : Chuang, Kai-Ting Authors : Rodrigo T. Peres, Claus Aranha, Carlos E. Pedreira 2013, InfSci Optimized bi-dimensional.
Adaptive Cluster Ensemble Selection Javad Azimi, Xiaoli Fern {azimi, Oregon State University Presenter: Javad Azimi. 1.
Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Hsin-Chang Yang, Han-Wei Hsiao, Chung-Hong Lee IPM Multilingual document mining.
Intelligent Database Systems Lab Presenter: WU, JHEN-WEI Authors: Olatz Arbelaitz, Ibai Gurrutxaga, Javier Muguerza, Jesús M. Pérez and Iñigo Perona 2013.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Learning Portfolio Analysis and Mining for SCORM Compliant Environment Pattern Recognition (PR, 2010)
Forecasting of preprocessed daily solar radiation time series using neural networks Presenter : Cheng-Han Tsai Authors : Christophe Paoli, Cyril Voyant,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A Cluster Validity Measure With Outlier Detection for Support Vector Clustering Presenter : Lin, Shu-Han.
(poster size is 84.1x118.9 cm) POSTER TEMPLATE A0
Aggregation pheromone density based data clustering
Word AdHoc Network: Using Google Core Distance to extract the most relevant information Presenter : Wei-Hao Huang   Authors : Ping-I Chen, Shi-Jen.
Authors Alessandro Duminuco, Ernst Biersack Taoufik and En-Najjary
POSTER TEMPLATE (poster size is 70x110 cm)
سرطان الثدي Breast Cancer
POSTER TEMPLATE (poster size is 70x110 cm)
Title First name, last name, university, city, country
Presentation transcript:

A robust adaptive clustering analysis method for automatic identification of clusters Presenter : Bo-Sheng Wang Authors: P.Y. Mok*, H.Q. Huang, Y.L. Kwok, J.S. Au PR,

Outlines Motivation Objectives Methodology Experiments Compary Conclusions Comments 2

Motivation Correct cluster numbers do not guarantee that a data set can be properly partitioned in the desired way. 3

Objectives The objective of this paper is to propose a robust and adaptive clustering analysis method. 1. Produces reliable clustering results 2.Identifies the desired cluster number. 4

Methodology- Fuzzy C-mean(FCM) 5

Methodology- Fuzzy C-mean(Example) 6

7

8

9

Mothodology- RAC-FCM 10

Mothodology- RAC-FCM 11

Mothodology- RAC-FCM 12

Mothodology- RAC-FCM 13

Mothodology- Adaptive implementation 14

Experiments- K-mean 15 KM

Experiments- K-mean+RAC-FCM 16

Mothodology- Application 17

Experiments When the distribution of cluster number is not stable enough to give the desired number. Increasing the upper bound of cluster number can. 18

Experiments 19

Experiments 20

Experiments This paper use the three widely data sets including the Iris data set, Breast Cancer Wisconsin (Diagnostic) data set and Wine data set. Step: 1.Verified the distribution stability of the cluster number 2.Compared to different cluster validity index methods. 21

Experiments - Iris Data Set 22

Experiments - Breast Cancer Wisconsin (Diagnostic) data set 23

Experiments - Wine data set 24

Experiments - Compary different Data Set 25

Compary- Comparison with the spectral clustering method 26 RAC-FCMSpectral Clustering Method WIN

Compary- Comparison with cluster ensembles 27

Conclusions This paper proposes method no cluster number is needed to define. The method is not only robust but also adaptive. The method not only identifies the desired cluster number but also ensures reliable clustering results. 28

Comments Advantages – We can obtain optimum Result use this method in cluster analysis. Disadvantage – This method is very take the time because of a program. Applications – Cluster Analysis 29