PREPARED BY V.SANDHIYA LECT/ ECE UNIT- 3 APPLICATIONS OF OP-AMP 1.

Slides:



Advertisements
Similar presentations
Interfacing to the Analog World
Advertisements

Analog to Digital Conversion (ADC)
Analog-to-Digital Converter (ADC) And
Lecture 17: Analog to Digital Converters Lecturers: Professor John Devlin Mr Robert Ross.
1 Analog to Digital Conversion ADC Essentials A/D Conversion Techniques Interfacing the ADC to the IBM PC DAS (Data Acquisition Systems) How to select.
Sensors Interfacing.
Data Acquisition ET 228 Chapter
Digital to Analog and Analog to Digital Conversion
Digital Fundamentals Tenth Edition Floyd Chapter 12.
Announcements Assignment 8 posted –Due Friday Dec 2 nd. A bit longer than others. Project progress? Dates –Thursday 12/1 review lecture –Tuesday 12/6 project.
Data Acquisition Risanuri Hidayat.
Data Acquisition Concepts Data Translation, Inc. Basics of Data Acquisition.
5/4/2006BAE Analog to Digital (A/D) Conversion An overview of A/D techniques.
Lecture 9: D/A and A/D Converters
10/23/2003ME DAC Lecture1 DAC Sunij Chacko Pierre Emmanuel Deliou Thomas Holst Used with modification.
Mixed Signal Chip Design Lab Analog-to-Digital Converters Jaehyun Lim, Kyusun Choi Department of Computer Science and Engineering The Pennsylvania State.
Analogue to Digital Conversion
Interfacing Analog and Digital Circuits
DIGITAL SYSTEMS TCE INTERFACING WITH ANALOG DEVICES (Week 12)
Unit 4 Sensors and Actuators
Data acquisition and manipulation
Interfacing with the Analog World Wen-Hung Liao, Ph.D.
EE174 – SJSU Lecture #4 Tan Nguyen
EET260: A/D and D/A converters
Introduction to Analog-to-Digital Converters
Analogue Input/Output
PH4705/ET4305: A/D: Analogue to Digital Conversion
Digital to Analog Converters
Digital to Analog and Analog to Digital Conversion
Computer Data Acquisition and Signal Conversion Chuck Kammin ABE 425 March 27, 2006.
Difference amplifier.
Non-linear application Inverting Schmitt Trigger
Data Converters ELEC 330 Digital Systems Engineering Dr. Ron Hayne
1 Sensors and Measurements Penderia & Pengukuran ENT 164 Signal Processing Elements Hema C.R. School of Mechatronics Engineering Northern Malaysia University.
ACOE2551 Microprocessors Data Converters Analog to Digital Converters (ADC) –Convert an analog quantity (voltage, current) into a digital code Digital.
INTERFACE WITH ANALOG WORLD
Analog to Digital conversion. Introduction  The process of converting an analog signal into an equivalent digital signal is known as Analog to Digital.
Data Acquisition Systems
University of Tehran 1 Interface Design Transforms Omid Fatemi.
Data Acquisition ET 228 Chapter 15 Subjects Covered Analog to Digital Converter Characteristics Integrating ADCs Successive Approximation ADCs Flash ADCs.
1 Data-Converter Circuits A/D and D/A Chapter 9 1.
Digital Control CSE 421.
Analog/Digital Conversion
Digital to Analog Converter (DAC)
ECE 2799 Electrical and Computer Engineering Design ANALOG to DIGITAL CONVERSION Prof. Bitar Last Update:
Digital-to-Analog Analog-to-Digital Week 10. Data Handling Systems  Both data about the physical world and control signals sent to interact with the.
0808/0809 ADC. Block Diagram ADC ADC0808/ADC Bit μP Compatible A/D Converters with 8-Channel Multiplexer The 8-bit A/D converter uses successive.
Digital Logic & Design Dr.Waseem Ikram Lecture 44.
1 Basic Signal Conversion 센서 및 계측 공학 (Sensor and Instrumentation Engineering) 2016 년 1 학기 충북대학교 전기전자반도체공학과 박 찬식
Digital-to-Analog Analog-to-Digital
Lecture Notes / PPT UNIT III
Analog-Digital Conversion. Other types of ADC i. Dual Slope ADCs use a capacitor connected to a reference voltage. the capacitor voltage starts at zero.
Electronic Devices and Circuit Theory
Digital to analog converter [DAC]
MECH 373 Instrumentation and Measurements
Microprocessors Data Converters Analog to Digital Converters (ADC)
SIGNAL CONDITIONING Signal conditioning is stage of instrumentation system used for modifying the transduced signal into a usable format for the final.
Digital-to-Analog Analog-to-Digital
Digital Control CSE 421.
Analog-Digital Conversion
Data Acquisition System
EI205 Lecture 13 Dianguang Ma Fall 2008.
Chapter 13 Linear-Digital ICs
DIGITAL CONTROL 목 차 1. Introduction to Digital Control System
Digital-to-Analog Analog-to-Digital
Introduction to data converters
Introduction to data converters
Lesson 8: Analog Signal Conversion
Conversation between Analogue and Digital System
Chapter 7 Converters.
Presentation transcript:

PREPARED BY V.SANDHIYA LECT/ ECE UNIT- 3 APPLICATIONS OF OP-AMP 1

2 Analog to Digital Conversion ADC Essentials A/D Conversion Techniques Interfacing the ADC to the IBM PC DAS (Data Acquisition Systems) How to select and use an ADC A low cost DAS for the IBM PC

3 Why ADC ? n Digital Signal Processing is more popular u Easy to implement, modify, … u Low cost n Data from real world are typically Analog n Needs conversion system u from raw measurements to digital data u Consists of F Amplifier, Filters F Sample and Hold Circuit, Multiplexer F ADC

4 ADC Essentials n Basic I/O Relationship u ADC is Rationing System F x = Analog input / Reference Fraction: 0 ~ 1 n n bits ADC u Number of discrete output level : 2 n u Quantum F LSB size F Q = LSB = FS / 2 n n Quantization Error u  1/2 LSB u Reduced by increasing n

5 Analog Input Signal n Typically, Differential or Single-ended input signal of a single polarity u Typical Input Range F 0 ~ 10V and 0 ~ 5V u If Actual input signal does not span Full Input range F Some of the converter output code never used F Waste of converter dynamic range F Greater relative effects of the converter errors on output n Matching input signal and input range u Prescaling input signal using OP Amp F In a final stage of preconditioning circuit u By proportionally scaling down the reference signal F If reference signal is adjustable

6 Converting bipolar to unipolar n Using unipolar converter when input signal is bipolar u Scaling down the input u Adding an offset n Bipolar Converter u If polarity information in output is desired u Bipolar input range F Typically, 0 ~  5V u Bipolar Output F 2’s Complement F Offset Binary F Sign Magnitude F … n Input signal is scaled and an offset is added scaled Add offset

7 Outputs and Analog Reference Signal n I/O of typical ADC n ADC output u Number of bits F 8 and 12 bits are typical F 10, 14, 16 bits also available u Typically natural binary F BCD (3½ BCD) For digital panel meter, and digital multimeter n Errors in reference signal u From F Initial Adjustment F Drift with time and temperature u Cause F Gain error in Transfer characteristics n To realize full accuracy of ADC u Precise and stable reference is crucial F Typically, precision IC voltage reference is used 5ppm/  C ~ 100ppm/  C

8 Control Signals n Start u From CPU u Initiate the conversion process n BUSY / EOC u To CPU u Conversion is in progress F 0=Busy: In progress F 1=EOC: End of Conversion n HBE / LBE u From CPU u To read Output word after EOC F HBE High Byte Enable F LBE Low Byte Enable

9 A/D Conversion Techniques n Counter or Tracking ADC n Successive Approximation ADC u Most Commonly Used n Dual Slop Integrating ADC n Voltage to Frequency ADC n Parallel or Flash ADC u Fast Conversion n Software Implementation n Shaft Encoder

10 Counter Type ADC n Block diagram n Waveform n Operation u Reset and Start Counter u DAC convert Digital output of Counter to Analog signal u Compare Analog input and Output of DAC F Vi < V DAC Continue counting F Vi = V DAC Stop counting u Digital Output = Output of Counter n Disadvantage u Conversion time is varied F 2 n Clock Period for Full Scale input

11 Tracking Type ADC n Tracking or Servo Type u Using Up/Down Counter to track input signal continuously F For slow varying input n Can be used as S/H circuit u By stopping desired instant u Digital Output u Long Hold Time n Disabling UP (Down) control, Converter generate u Minimum (Maximum) value reached by input signal over a given period

12 Successive Approximation ADC n Most Commonly used in medium to high speed Converters n Based on approximating the input signal with binary code and then successively revising this approximation until best approximation is achieved n SAR(Successive Approximation Register) holds the current binary value n Block Diagram

13 Successive Approximation ADC n Circuit waveform n Logic Flow n Conversion Time u n clock for n-bit ADC u Fixed conversion time n Serial Output is easily generated u Bit decision are made in serial order

14 Dual Slope Integrating ADC n Operation u Integrate u Reset and integrate u Thus u  n Applications u DPM(Digital Panel Meter), DMM(Digital Multimeter), … n Excellent Noise Rejection u High frequency noise cancelled out by integration u Proper T 1 eliminates line noise u Easy to obtain good resolution n Low Speed u If T 1 = 60Hz, converter throughput rate < 30 samples/s

15 Voltage to Frequency ADC n VFC (Voltage to Frequency Converter) u Convert analog input voltage to train of pulses n Counter u Generates Digital output by counting pulses over a fixed interval of time n Low Speed n Good Noise Immunity n High resolution u For slow varying signal u With long conversion time n Applicable to remote data sensing in noisy environments u Digital transmission over a long distance

16 Parallel or Flash ADC n Very High speed conversion u Up to 100MHz for 8 bit resolution u Video, Radar, Digital Oscilloscope n Single Step Conversion u 2 n –1 comparator u Precision Resistive Network u Encoder n Resolution is limited u Large number of comparator in IC n Homework #5-1 u 어떻게 동시에 비교가 되는지를 설명하라.

17 Interface Software n Memory Mapped Transfers u ADC is assigned in Memory Space F MRD, MWR signal F MOV instruction u More complex decoding logic n I/O Mapped Transfers u ADC is in I/O Space F IOR, IOW signal F IN, OUT instruction u More Simple decoding logic n DMA (Direct Memory Access) u CPU release system bus by the request of DMA u DMA controller carried out data transfer by generating the required addresses and control signals u The system bus control reverts back to CPU when data transfer is finished n DMA is useful u High Speed u High volume data transfer F Disk Drive interface

18 DAS (Data Acquisition System) n DAS performs the complete function of converting the raw outputs from one or more sensors into equivalent digital signals usable for further processing, control, or displaying applications n Applications u Simple monitoring of a single analog variable u Control and Monitoring of hundreds of parameters in a nuclear plant

19 Single Channel System n Transducer u Generate signal of low amplitude, mixed with undesirable noise n Amplifier, Filters u Amplify u Remove noise u Linearize n S/H (Sample and Hold) u Reduce uncertainty error in the converted output when input changes are fast compared to the conversion time u In Multi-channel system F To hold a sample from one channel while multiplexer proceed to sample next one F Simultaneous sampling of two signal

20 Sample and Hold Circuits n Care in selecting hold capacitor Ch u Low Value F Reduces acquisition time F Increase Droop u High Value F Minimize Droop F Increase acquisition time u Choose capacitor to get a best acquisition time while keeping the droop per conversion below 1 LSB

21 Multi-channel System n Analog multiplexer and a ADC u Low cost n Local ADCs and digital multiplexer u Higher sampling rate

22 How to select and use an ADC n Range of commercially available ADCs n Guidelines for using ADCs u Use the full input range of the ADC u Use a good source of reference signal u Look out for fast input signal changes u Keep analog and digital grounds separate u Minimize interference and loading problem

23 Commercially available monolithic ADCs

24 Commercially available hybrid ADCs

25 Accuracy Calculation n Better than 1% accuracy is ensured n Actual accuracy with smooth input signal at room temperature will be better than 0.5%