Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, 19.12.2005 1 22.4.2008 Augmented Reality VU 4 Algorithms + Tracking.

Slides:



Advertisements
Similar presentations
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Advertisements

Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz.
Projective 3D geometry class 4
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 1 Projective Geometry.
Scene Reconstruction from Two Projections Eight Points Algorithm Speaker: Junwen WU Course:CSE291 Learning and Vision Seminar Date: 11/13/2001.
Camera Calibration.
Computer vision: models, learning and inference
25 seconds left…...
We will resume in: 25 Minutes.
The fundamental matrix F
Lecture 11: Two-view geometry
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 2 Calibration Axel Pinz.
MASKS © 2004 Invitation to 3D vision Lecture 7 Step-by-Step Model Buidling.
Robot Vision SS 2005 Matthias Rüther 1 ROBOT VISION Lesson 3: Projective Geometry Matthias Rüther Slides courtesy of Marc Pollefeys Department of Computer.
Two-View Geometry CS Sastry and Yang
Chapter 6 Feature-based alignment Advanced Computer Vision.
Structure from motion.
Accurate Non-Iterative O( n ) Solution to the P n P Problem CVLab - Ecole Polytechnique Fédérale de Lausanne Francesc Moreno-Noguer Vincent Lepetit Pascal.
Multiple View Geometry
Parameter estimation class 5 Multiple View Geometry Comp Marc Pollefeys.
Epipolar geometry. (i)Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point.
Structure from motion. Multiple-view geometry questions Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Lecture 11: Structure from motion CS6670: Computer Vision Noah Snavely.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Previously Two view geometry: epipolar geometry Stereo vision: 3D reconstruction epipolar lines Baseline O O’ epipolar plane.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Multiple View Reconstruction Class 23 Multiple View Geometry Comp Marc Pollefeys.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Camera parameters Extrinisic parameters define location and orientation of camera reference frame with respect to world frame Intrinsic parameters define.
Lecture 10: Robust fitting CS4670: Computer Vision Noah Snavely.
1Jana Kosecka, CS 223b EM and RANSAC EM and RANSAC.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
Multi-view geometry. Multi-view geometry problems Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates.
Automatic Camera Calibration
Computer vision: models, learning and inference
Projective geometry of 2-space DLT alg HZ 4.1 Rectification HZ 2.7 Hierarchy of maps Invariants HZ 2.4 Projective transform HZ 2.3 Behaviour at infinity.
Advanced Computer Vision Feature-based Alignment Lecturer: Lu Yi & Prof. Fuh CSIE NTU.
Epipolar geometry The fundamental matrix and the tensor
Homogeneous Coordinates (Projective Space) Let be a point in Euclidean space Change to homogeneous coordinates: Defined up to scale: Can go back to non-homogeneous.
CSCE 643 Computer Vision: Structure from Motion
3D Reconstruction Jeff Boody. Goals ● Reconstruct 3D models from a sequence of at least two images ● No prior knowledge of the camera or scene ● Use the.
Multiview Geometry and Stereopsis. Inputs: two images of a scene (taken from 2 viewpoints). Output: Depth map. Inputs: multiple images of a scene. Output:
Robot Vision SS 2007 Matthias Rüther 1 ROBOT VISION Lesson 6a: Shape from Stereo, short summary Matthias Rüther Slides partial courtesy of Marc Pollefeys.
Single View Geometry Course web page: vision.cis.udel.edu/cv April 9, 2003  Lecture 20.
1 Formation et Analyse d’Images Session 7 Daniela Hall 25 November 2004.
Computing F. Content Background: Projective geometry (2D, 3D), Parameter estimation, Algorithm evaluation. Single View: Camera model, Calibration, Single.
Parameter estimation. 2D homography Given a set of (x i,x i ’), compute H (x i ’=Hx i ) 3D to 2D camera projection Given a set of (X i,x i ), compute.
Computer Vision : CISC 4/689 Going Back a little Cameras.ppt.
3D reconstruction from uncalibrated images
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
Structure from motion Multi-view geometry Affine structure from motion Projective structure from motion Planches : –
EECS 274 Computer Vision Projective Structure from Motion.
Parameter estimation class 5 Multiple View Geometry CPSC 689 Slides modified from Marc Pollefeys’ Comp
Geometric Camera Calibration
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry
Homogeneous Coordinates (Projective Space)
Parameter estimation class 5
Epipolar geometry.
3D Photography: Epipolar geometry
Structure from motion Input: Output: (Tomasi and Kanade)
Multiple View Geometry Comp Marc Pollefeys
Estimating 2-view relationships
Calibration and homographies
Back to equations of geometric transformations
Structure from motion Input: Output: (Tomasi and Kanade)
Parameter estimation class 6
Presentation transcript:

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Algorithms Point correspondences –Salient point detection –Local descriptors Matrix decompositions –RQ decomposition –Singular value decomposition - SVD Estimation –Systems of linear equations –Solving systems of linear equations Direct Linear Transform – DLT Normalization Iterative error / cost minimization Outliers Robustness, RANSAC –Pose estimation Perspective n-point problem – PnP

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Relevant Issues in Practice Poor condition of A Normalization Algebraic error vs. geometric error, Iterative minimization nonlinearities (lens dist.) Outliers Robust algorithms (RANSAC)

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Normalization (1) Homography H: Entries of A are quadratic in point coordinates SVD is not robust against coordinate transform ! –change of coordinate system (translation, scaling) will influence result ! –algebraic vs. geometric error ! Normalization recommended, e.g.: –translate origin (0,0,1) image center –isotropic scaling such that: either average distance to (0,0,1) is, or average point is (1,1,1)

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Normalization (2) Fundamental Matrix F: poor condition of A T A Normalization is mandatory normalized 8-point algorithm to estimate F [Hartley95] in defense of the 8-point algorithm note: some algorithms use eigenvalues of A T A instead of singular values (SVD) !

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Iterative Minimization DLT minimizes algebraic error geometric distance is more complex Lens distortion is non-linear Standard approach: –estimate linear parameters by DLT initialization for –subsequent iterative minimization over all parameters E.g.: gold standard for estimation of H

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Gold Standard for Estimation of H (1) [Hartley+Zisserman] Objective Given n4 2D to 2D point correspondences {x i x i }, determine the 2D homography matrix H such that x i =Hx i Algorithm (i) (i)For each correspondence x i x i compute A i. Usually only two first rows needed. (ii) (ii)Assemble n 2x9 matrices A i into a single 2 n x9 matrix A (iii) (iii)Obtain SVD of A. Solution for h is last column of V (iv) (iv)Determine H from h [adapted from Pollefeys course] DLT algorithm to estimate H:

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Gold Standard for Estimation of H (2) [Hartley+Zisserman] [adapted from Pollefeys course] normalized DLT algorithm to estimate H: Objective Given n4 2D to 2D point correspondences {x i x i }, determine the 2D homography matrix H such that x i =Hx i Algorithm (i) (i)Normalize points (ii) (ii)Apply DLT algorithm to (iii) (iii)Denormalize solution

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Gold Standard for Estimation of H (3) [Hartley+Zisserman] [adapted from Pollefeys course] Objective Given n4 2D to 2D point correspondences {x i x i }, determine the Maximum Likelihood Estimation of H Algorithm (i) (i)Initialization: compute an initial estimate using normalized DLT or RANSAC (ii) (ii)Geometric minimization of either Sampson error: Minimize the Sampson error Minimize using Levenberg-Marquardt over 9 entries of h or Gold Standard error: compute initial estimate for subsidiary minimize cost over if many points, use sparse method

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Robust Estimation (RANSAC) [Hartley+Zisserman] Handling of outliers ! RANSAC = RANdom Sample Consensus

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz RANSAC Algorithm [Hartley+Zisserman] Objective Robust fit of model to data set S which contains outliers Algorithm (i) (i)Randomly select a sample of s data points from S and instantiate the model from this subset. (ii) (ii)Determine the set of data points S i which are within a distance threshold t of the model. The set S i is the consensus set of samples and defines the inliers of S. (iii) (iii)If the subset of S i is greater than some threshold T, re- estimate the model using all the points in S i and terminate (iv) (iv)If the size of S i is less than T, select a new subset and repeat the above. (v) (v)After N trials the largest consensus set S i is selected, and the model is re-estimated using all the points in the subset S i [adapted From Pollefeys course]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz RANSAC Algorithm [Hartley+Zisserman] proportion of outliers e s5%10%20%25%30%40%50% sample size vs. proportion of outliers: [adapted from Pollefeys course]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz More Problems critical cases ! e.g. [Torr+Murray, IJCV 1997]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Pose Estimation X Y Z calibrated camera, known K C xCxC yCyC zCzC R, t Camera xVxV yVyV zVzV Visualization (screen, HMD) R, t determine camera pose: R, t

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Perspective n-Point Problem – PnP (1) Calibrated camera –Known K Known points P i in the scene Given n point correspondences –pi Pi–pi Pi What can be measured with one calibrated camera? angle θ between two lines of sight papa pbpb PbPb PaPa d ab θ C

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Perspective n-Point Problem – PnP (2) PnP uses just this information: P3P will give up to 4 solutions P4P is already overdetermined –Perform 4 x P3P –Find consensus papa pbpb PbPb PaPa d ab θ C

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Pose Estimation Tracking In theory, tracking is simple ! –Calibrate your camera (K) –Measure some points P i in the scene (ground truth) –Perform pose estimation in real-time (for each frame) In practice, tracking is a hard problem ! –Point detection –Correspondence –Motion prediction –Occlusion –Unknown scene –…–… Many solutions have been proposed ! Tracking beyond 15 minutes of thought SIGGRAPH 2001 Turorial #15 [Allen, Bishop, Welch] An introduction to the Kalman filter SIGGRAPH 2001 Turorial #8 [Welch, Bishop]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Tracking Systems (vision-based / hybrid) some of my own contributions (1) Hybrid inside out magnetic + stereo vision [Auer 1999]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Tracking Systems (vision-based / hybrid) some of my own contributions (2) stereo vision outside in [Ribo ca. 2000]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Tracking Systems (vision-based / hybrid) some of my own contributions (3) inertial inside out hybrid inertal + vision [many ]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Tracking Systems (vision-based / hybrid) some of my own contributions (4) vision (stereo or mono) inside out speed solves correspondence ! [Mühlmann 2005]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Our Current View [Schweighofer 2008] stereo vision inside out structure and motion

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz Summary In these four lectures, I gave an introduction to: Projective geometry Perspective cameras Homographies, camera projection matrices, fundamental and essential matrices Algorithms that are typically applied to solve for –Camera calibration –Stereo reconstruction –Camera pose estimation I consider this the basis for further reading in topics including: Vision-based pose tracking Structure and motion analysis (sometimes termed SLAM) Many aspects were, of course, not covered, but would also be important !

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking Axel Pinz What could not be covered ? Self calibration (see Pollefeys, absolute conic,…) Bundle adjustment Levenberg-Marquardt The full presentation of algorithms for the estimation of H, P, K, F, … –see the Hartley, Zisserman book for all about multiple view geometry Tracking in general, Kalman filter (two UNC Siggraph 2001Tutorials) Several prominent variants of vision-based tracking algorithms/systems: –KLT –Rapid, RoRapid –Condensation, ICondensation –[Lu, Hager] –[Ansar, Daniilidis] –[Wunsch, Hirzinger] –[Klein, Murray] –… Another reference to Pollefeys: interested in more detail ? 2 VO Image based measurement WS 1 LU Image based measurement SS seminar, project, bachelor, diploma, PhD, …