Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, 19.12.2005 1 15.4.2008 Augmented Reality VU 3 Algorithms Axel Pinz.

Slides:



Advertisements
Similar presentations
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Advertisements

Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 4 Algorithms + Tracking.
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 1 Projective Geometry.
Feature Detection. Description Localization More Points Robust to occlusion Works with less texture More Repeatable Robust detection Precise localization.

Discrete Math Recurrence Relations 1.
Computer vision: models, learning and inference
Feature points extraction Many slides are courtesy of Darya Frolova, Denis Simakov A low level building block in many applications: Structure from motion.
Object Recognition from Local Scale-Invariant Features David G. Lowe Presented by Ashley L. Kapron.
Scale & Affine Invariant Interest Point Detectors Mikolajczyk & Schmid presented by Dustin Lennon.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
6.4 Best Approximation; Least Squares
Group Meeting Presented by Wyman 10/14/2006
Essential Cell Biology
PSSA Preparation.
Essential Cell Biology
Energy Generation in Mitochondria and Chlorplasts
State Variables.
Optical Flow Estimation
CSE 473/573 Computer Vision and Image Processing (CVIP)
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 2 Calibration Axel Pinz.
Outline Feature Extraction and Matching (for Larger Motion)
Matching with Invariant Features
1 Interest Operators Find “interesting” pieces of the image –e.g. corners, salient regions –Focus attention of algorithms –Speed up computation Many possible.
Midterm Review CS485/685 Computer Vision Prof. Bebis.
1 Interest Operator Lectures lecture topics –Interest points 1 (Linda) interest points, descriptors, Harris corners, correlation matching –Interest points.
Epipolar geometry. (i)Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point.
Uncalibrated Geometry & Stratification Sastry and Yang
Feature matching and tracking Class 5 Read Section 4.1 of course notes Read Shi and Tomasi’s paper on.
Feature extraction: Corners and blobs
Interest Points and Corners Computer Vision CS 143, Brown James Hays Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI.
Feature tracking Class 5 Read Section 4.1 of course notes Read Shi and Tomasi’s paper on good features.
Stepan Obdrzalek Jirı Matas
Camera parameters Extrinisic parameters define location and orientation of camera reference frame with respect to world frame Intrinsic parameters define.
Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe – IJCV 2004 Brien Flewelling CPSC 643 Presentation 1.
Overview Introduction to local features
Projective geometry of 2-space DLT alg HZ 4.1 Rectification HZ 2.7 Hierarchy of maps Invariants HZ 2.4 Projective transform HZ 2.3 Behaviour at infinity.
1 Interest Operators Harris Corner Detector: the first and most basic interest operator Kadir Entropy Detector and its use in object recognition SIFT interest.
Overview Harris interest points Comparing interest points (SSD, ZNCC, SIFT) Scale & affine invariant interest points Evaluation and comparison of different.
Local invariant features Cordelia Schmid INRIA, Grenoble.
CSCE 643 Computer Vision: Structure from Motion
CSE 185 Introduction to Computer Vision Local Invariant Features.
Parameter estimation. 2D homography Given a set of (x i,x i ’), compute H (x i ’=Hx i ) 3D to 2D camera projection Given a set of (X i,x i ), compute.
Local invariant features Cordelia Schmid INRIA, Grenoble.
Harris Corner Detector & Scale Invariant Feature Transform (SIFT)
Overview Introduction to local features Harris interest points + SSD, ZNCC, SIFT Scale & affine invariant interest point detectors Evaluation and comparison.
Feature extraction: Corners and blobs. Why extract features? Motivation: panorama stitching We have two images – how do we combine them?
Features, Feature descriptors, Matching Jana Kosecka George Mason University.
CS654: Digital Image Analysis
Parameter estimation class 5 Multiple View Geometry CPSC 689 Slides modified from Marc Pollefeys’ Comp
CSE 185 Introduction to Computer Vision Local Invariant Features.
SIFT.
776 Computer Vision Jan-Michael Frahm Spring 2012.
SIFT Scale-Invariant Feature Transform David Lowe
Presented by David Lee 3/20/2006
Distinctive Image Features from Scale-Invariant Keypoints
3D Vision Interest Points.
Corners and interest points
TP12 - Local features: detection and description
Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei.
Epipolar geometry.
CSE 455 – Guest Lectures 3 lectures Contact Interest points 1
SIFT.
Edge detection f(x,y) viewed as a smooth function
Lecture VI: Corner and Blob Detection
Presentation transcript:

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Algorithms Point correspondences –Salient point detection –Local descriptors Matrix decompositions –RQ decomposition –Singular value decomposition - SVD Estimation –Systems of linear equations –Solving systems of linear equations Direct Linear Transform – DLT Normalization Iterative error / cost minimization Outliers Robustness, RANSAC –Pose estimation Perspective n-point problem – PnP

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Point Correspondences - Example 1 Structure and motion from natural landmarks [Schweighofer] Stereo reconstruction of Harris corners Stereo reconstruction of Harris corners

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Point Correspondences - Example 2 [Mikolajczyk+Schmid] normalization canonical view elliptical support correspondence

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) based on 1 st derivatives Autocorrelation of 2D image signal [Moravec] –Approximation by sum of squared differences (SSD) –Window W –Differences between grayvalues in W and a window shifted by (Δx,Δy) –Four different shift directions f i (x,y): –A corner is detected, when f Moravec >th

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) based on 1 st derivatives Autocorrelation (second moment) matrix: –Avoids various shift directions –Approximate I(x w +Δx,y w +Δy) by Taylor expansion: –Rewrite f(x,y): second moment matrix M

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) based on 1 st derivatives Autocorrelation (second moment) matrix: –M can be used to derive a measure of cornerness –Independent of various displacements (Δx,Δy) –Corner: significant gradients in >1 directions rank M = 2 –Edge: significant gradient in 1 direction rank M = 1 –Homogeneous region rank M = 0 Several variants of this corner detector: –KLT corners, Förstner corners

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) based on 1 st derivatives Harris corners –Most popular variant of a detector based on M –Local derivatives with derivation scale σ D –Convolution with a Gaussian with integration scale σ I –M Harris for each point x in the image –Cornerness c Harris does not require to compute eigenvalues –Corner detection: c Harris > t Harris

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) based on 1 st derivatives Harris corners

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) based on 2 nd derivatives Hessian determinant –Local maxima of det H [Beaudet] –Zero crossings of det H [Dreschler+Nagel] –Detectors are related to curvature –Invariant to rotation –Similar cornerness measure: local maxima of K [Kitchen+Rosenfeld]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) based on 2 nd derivatives DoG / LoG [Marr+Hildreth] –Zero crossings –Mexican hat, Sombrero –Edge detector ! Lowes DoG keypoints [Lowe] –Edge zero-crossing –Blob at corresponding scale: local extremum ! –Low contrast corner suppression: threshold –Assess curvature distinguish corners from edges –Keypoint detection:

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) without derivatives Morphological corner detector [Laganière] –4 structuring elements: +,, x, –Assymetrical closing

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) without derivatives SUSAN corners [Smith+Brady] –Sliding window –Faster than Harris

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) without derivatives Kadir/Brady saliency [Kadir+Brady] –Histograms –Shannon entropy –Scale selection –Used in constellation model [Fergus et al.]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Salient points (corners) without derivatives MSER – maximally stable extremal regions [Matas et al.] –Successive thresholds –Stability: regions survive over many thresholds

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Affine covariant corner detectors Locally planar patch affine distortion Detect characteristic scale –see also [Lindeberg], scale-space Recover affine deformation that fits local image data best [Mikolajczyk+Schmid] normalization canonical view elliptical support correspondence

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Scaled Harris Corner Detector Harris Laplace [Mikolajczyk+Schmid, Mikolajczyk et al.]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Scaled Hessian Detector Hessian Laplace [Mikolajczyk+Schmid, Mikolajczyk et al.]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Harris Affine Detector Harris affine [Mikolajczyk+Schmid, Mikolajczyk et al.]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Hessian Affine Detector Hessian affine [Mikolajczyk+Schmid, Mikolajczyk et al.]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Qualitative comparison of detectors (1) Harris Harris affineHarris Laplace Hessian affineHessian Laplace

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Qualitative comparison of detectors (2) Kadir/Brady morphological MSERSUSAN

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Descriptors (1) Representation of salient regions descriptive features feature vector There are many possibilities ! Categorization vs. specific OR, matching –Sufficient descriptive power –Not too much emphasis on specific individuals –Performance is often category-specific feature vector extracted from patch P n vs. AR ?

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Descriptors (2) Grayvalues –Raw pixel values of a patch P –local appearance-based description –local affine frame LAF [Obdržálek+Matas] for MSER General moments of order p+q: Moment invariants: –Central moments μ pq : invariant to translation

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Descriptors (3) Moment invariants: –Normalized central moments –Translation, rotation, scale invariant moments Φ1... Φ7 [Hu] –Geometric/photometric, color invariants [vanGool et al.] Filters –local jets [Koenderink+VanDoorn] –Gabor banks, steerable filters, discrete cosine transform DCT

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Descriptors (4) SIFT descriptors [Lowe] –Scale invariant feature transform –Calculated for local patch P: 8x8 or 16x16 pixels –Subdivision into 4x4 sample regions –Weighted histogram of 8 gradient directions: 0º, 45º, … –SIFT vector dimension: 128 for a 16x16 patch [Lowe]

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Algorithms Point correspondences –Salient point detection –Local descriptors Matrix decompositions –RQ decomposition –Singular value decomposition - SVD Estimation –Systems of linear equations –Solving systems of linear equations Direct Linear Transform – DLT Normalization Iterative error / cost minimization Outliers Robustness, RANSAC –Pose estimation Perspective n-point problem – PnP

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz RQ Decomposition (1) Remember camera projection matrix P P can be decomposed, e.g. finite projective camera

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz RQ Decomposition (2) Unfortunately: R refers to upper triangular, Q to rotation… Givens rotations: How to decompose a given 3 x 3 matrix (say M) ? –MQ x enforcing M 32 = 0, first column of M unchanged, last two columns replaced by linear combinations of themselves –MQ x Q y enforcing M 31 = 0, 2nd column unchanged (M 32 remains 0) –MQ x Q y Q z enforcing M 21 = 0, first two columns replaced by linear combinations of themselves, thus M 31 and M 32 remain 0 MQ x Q y Q z = R, M = RQ x T Q y T Q z T, where R is upper triangular How to enforce e.g. M 21 = 0 ?

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Singular Value Decomposition - SVD Given a square matrix A (e.g. 3x3) A can be decomposed into where U and V are orthogonal matrices, and D is a diagonal matrix with –non-negative entries, –entries in descending order. the column of V corresponding to the smallest singular value the last column of V

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz SVD (2) SVD is also possible when A is non-square (e.g. m x n, mn) A can again be decomposed into where U is m x n with orthogonal columns (U T U=I nxn ), D is an n x n diagonal matrix with –non-negative entries, –entries in descending order, V is an n x n orthogonal matrix.

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz SVD for Least-Squares Solutions Overdetermined system of linear equations Find least-squares ( algebraic error! ) solution Algorithm: 1.Find the SVD 2.Set 3.Find 4.The solution is Even easier for Ax=0: x is the last column of V

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Algorithms Point correspondences –Salient point detection –Local descriptors Matrix decompositions –RQ decomposition –Singular value decomposition - SVD Estimation –Systems of linear equations –Solving systems of linear equations Direct Linear Transform – DLT Normalization Iterative error / cost minimization Outliers Robustness, RANSAC –Pose estimation Perspective n-point problem – PnP

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz (2n x 9) / (2n x 12) matrix representing correspondences Systems of Linear Equations (1) Estimation of –A homography H: –The fundamental matrix: –The camera projection matrix: By finding n point correspondences –between 2 images –between image and scene And solving a system of linear equations –Typical form: 9 - vector representing H, F 12 - vector representing P

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Systems of Linear Equations (2) How to obtain ? Homography H –3 x 3 matrix, 8 DoF, non-singular –at least 4 point correspondences are required Fundamental matrix F –3 x 3 matrix, 7 DoF, rank 2 –at least 7 point correspondences are required Camera projection matrix P –3 x 4 matrix, 11 DoF, decomposition into K, R, t –at least 5-1/2 (6) point correspondences are required why ?

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Homography Estimation (1) Equation defining the computation of H Point correspondences Some notation: Simple rewriting:

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Homography Estimation (2) A i is a 3 x 9 matrix, h is a 9-vector the system describes 3 equations the equations are linear in the unknown h elements of A i are quadratic in the known point coordinates only 2 equations are linearly independent thus, the 3rd equation is usually omitted [Sutherland 63]: A i is a 2 x 9 matrix, h is a 9-vector

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Homography Estimation (3) 1 point correspondence defines 2 equations H has 9 entries, but is defined up to scale 8 degrees of freedom at least 4 point correspondences needed 4 x 2 equations General case: overdetermined n point correspondences 2n equations, A is a 2n x 9 matrix

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Camera Projection Matrix Estimation homography H:projection matrix P very similar ! n point correspondences 2n equations that are linear in elements of P A is a 2n x 12 matrix, entries are quadratic in point coordinates p is a 12-vector P has only 11 degrees of freedom a minimum of 11 equations is required 5-1/2 (6) point correspondences

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Fundamental (Essential) Matrix Estimation (1) solving is different from solving each correspondence gives only one equation in the coefficients of F ! for n point matches we again obtain a set of linear equations (linear in f 1 -f 9 )

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Fundamental (Essential) Matrix Estimation (2) F is a 3 x 3 matrix, has rank 2, |F| = 0 F has only 7 degrees of freedom at least 7 point correspondences are required to estimate F Back to the solution of systems of linear equations ! similar systems of equations, but: different constraints

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz SVD for Least-Squares Solutions Overdetermined system of linear equations Find least-squares ( algebraic error! ) solution Algorithm: 1.Find the SVD 2.Set 3.Find 4.The solution is Even easier for Ax=0: x is the last column of V This is also called direct linear transform – DLT

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Professor Horst Cerjak, Augmented Reality VU 3 Algorithms Axel Pinz Relevant Issues in Practice Poor condition of A Normalization Algebraic error vs. geometric error, Iterative minimization nonlinearities (lens dist.) Outliers Robust algorithms (RANSAC)