2. Boolean Algebra and Logic Gates

Slides:



Advertisements
Similar presentations
Boolean Algebra and Logic Gates
Advertisements

Boolean Algebra and Logic Gates
Boolean Algebra and Logic Gates
Chapter 2 Logic Circuits.
Chapter 2 – Combinational Logic Circuits Part 1 – Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals.
CS 151 Digital Systems Design Lecture 6 More Boolean Algebra A B.
Boolean Algebra and Logic Gates
1 Chapter 2 Boolean Algebra and Logic Gates The most common postulates ( 假設 ; 基本條件 ) used to formulate various algebraic structures are: 1. Closure ( 封閉性.
28/06/041 CSE-221 Digital Logic Design (DLD) Lecture-5: Canonical and Standard forms and Integrated Circuites.
Chapter Two Boolean Algebra and Logic Gate
Boolean Algebra. Binary Logic and Gates Binary variables take on one of two values. Logical operators operate on binary values and binary variables. Basic.
Chapter 2 Boolean Algebra and Logic Gates
Boolean Algebra Boolean algebra Boolean algebra, like any other deductive mathematical system, may be defined with –a set of elements, –a set of operators,
Logic Design CS221 1 st Term Boolean Algebra Cairo University Faculty of Computers and Information.
1 Why study Boolean Algebra? 4 It is highly desirable to find the simplest circuit implementation (logic) with the smallest number of gates or wires. We.
BOOLEAN ALGEBRA Saras M. Srivastava PGT (Computer Science)
Chapter 2 Boolean Algebra and Logic Gates 授課教師 : 張傳育 博士 (Chuan-Yu Chang Ph.D.) Tel: (05) ext.
1 Representation of Logic Circuits EE 208 – Logic Design Chapter 2 Sohaib Majzoub.
Chapter 2. Outlines 2.1 Introduction 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra 2.4 Basic thermos and proprieties of Boolean Algebra.
Logic Design Dr. Yosry A. Azzam.
Chapter 2: Boolean Algebra and Logic Gates. F 1 = XY’ + X’Z XYZX’Y’XY’X’ZF1F
Switching Theory and Logic Design
Boolean Logic and Circuits ELEC 311 Digital Logic and Circuits Dr. Ron Hayne Images Courtesy of Cengage Learning.
Digital System Ch2-1 Chapter 2 Boolean Algebra and Logic Gates Ping-Liang Lai ( 賴秉樑 ) Digital System 數位系統.
Chap 2. Combinational Logic Circuits. Chap Binary Logic and Gates l 디지털 회로 (Digital circuits) o hardware components that manipulate binary information.
Boolean Algebra and Logic Gates
1 Boolean Algebra  Digital circuits Digital circuits  Boolean Algebra Boolean Algebra  Two-Valued Boolean Algebra Two-Valued Boolean Algebra  Boolean.
Chap 2. Combinational Logic Circuits
ENGIN112 L6: More Boolean Algebra September 15, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra A B.
1 CSE370, Lecture 3 Lecture 3: Boolean Algebra u Logistics u Last lecture --- Numbers n Binary numbers n Base conversion n Number systems for negative.
A. Abhari CPS2131 Chapter 2: Boolean Algebra and Logic Gates Topics in this Chapter: Boolean Algebra Boolean Functions Boolean Function Simplification.
1 Lect # 2 Boolean Algebra and Logic Gates Boolean algebra defines rules for manipulating symbolic binary logic expressions. –a symbolic binary logic expression.
Logic Circuits Lecture 3 By Amr Al-Awamry. Basic Definitions Binary Operators  AND z = x y = x yz=1 if x=1 AND y=1  OR z = x + y z=1 if x=1 OR y=1 
Binary Logic and Gates Boolean Algebra Canonical and Standard Forms Chapter 2: Boolean Algebra and Logic Gates.
D IGITAL L OGIC D ESIGN I B OOLEAN A LGEBRA AND L OGIC G ATE 1.
Boolean Algebra & Logic Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
CMPUT Computer Organization and Architecture II1 CMPUT329 - Fall 2002 Topic2: DeMorgan Laws José Nelson Amaral.
Module 5.  In Module 3, you have learned the concept of Boolean Algebra which consists of binary variables and binary operator.  A binary variable x,
Boolean Algebra and Logic Gates
Chapter 2: Basic Definitions BB inary Operators ●A●AND z = x y = x yz=1 if x=1 AND y=1 ●O●OR z = x + yz=1 if x=1 OR y=1 ●N●NOT z = x = x’ z=1 if x=0.
R. Johnsonbaugh Discrete Mathematics 5 th edition, 2001 Chapter 9 Boolean Algebras and Combinatorial Circuits.
Lecture 18: Boolean Algebra Boolean Functions. w = Chris is allowed to watch television x = Chris's homework is finished y = it is a school night z =
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 4 Dr. Shi Dept. of Electrical and Computer Engineering.
1 Digital Design Debdeep Mukhopadhyay Associate Professor Dept of Computer Science and Engineering NYU Shanghai and IIT Kharagpur.
ECE DIGITAL LOGIC LECTURE 8: BOOLEAN FUNCTIONS Assistant Prof. Fareena Saqib Florida Institute of Technology Spring 2016, 02/11/2016.
Lecture 5 More Boolean Algebra A B. Overview °Expressing Boolean functions °Relationships between algebraic equations, symbols, and truth tables °Simplification.
CSE 461. Binary Logic Binary logic consists of binary variables and logical operations. Variables are designated by letters such as A, B, C, x, y, z etc.
1 논리공학 고려대학교 전기전자전파공학부 김종국. 2  1 or 0, yes or no, true or false …  디지털 시스템을 위한 기초  거의 모든 전기전자제품은 디지털 시스템 e.g., 핸드폰, 전자시계, 컴퓨터 …  이진수  필요성  십진수에서.
Fuw-Yi Yang1 數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: Fuw-Yi.
Basic Laws, theorems, and postulates of Boolean Algebra
CHAPTER 2 Boolean algebra and Logic gates
Digital Logic Circuits, Digital Component and Data Representation Course: BCA-2 nd Sem Subject: Computer Organization And Architecture Unit-1 1.
Speaker: Fuw-Yi Yang 楊伏夷 伏夷非征番, 道德經 察政章(Chapter 58) 伏者潛藏也
Table 2.1 Postulates and Theorems of Boolean Algebra
ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture)
CS 105 Digital Logic Design
CHAPTER 2 Boolean Algebra This chapter in the book includes:
Princess Sumaya University
ECE 331 – Digital System Design
Speaker: Fuw-Yi Yang 楊伏夷 伏夷非征番, 道德經 察政章(Chapter 58) 伏者潛藏也
Lecture 3: Boolean Algebra
Boolean Algebra.
INTRODUCTION TO LOGIC DESIGN Chapter 2 Boolean Algebra and Logic Gates
Boolean Algebra.
Lecture 14: Boolean Algebra
Chapter 2 Boolean Algebra and Logic Gate
2. Boolean Algebra and Logic Gates
Table 2.1 Postulates and Theorems of Boolean Algebra
Digital Logic Chapter-2
Digital Logic Chapter-2
Presentation transcript:

2. Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Basic Definitions (일반적인 대수 체계의 경우) 1. Closure : A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique elements of S. 2. Associative law : (x*y)*z=x*(y*z) for all x,y,z∈S 3. Commutative law : x*y=y*x for all x,y∈S 4. Identity elements: for all x∈S, e*x=x*e=x ex) set of integers I={…, -3, -2, -1, 0, 1, 2, 3, …}, x+0=0+x=x 5. Inverse : A set S having the identity elements for all x∈S , y∈S, x*y=e 6. Distributive law : x*(y . z)=(x*y) . (x*z)

Boolean Algebra and Logic Gates 예) 실수 (+) : 덧셈 Identity element : 0 Inverse : -a (.) : 곱셈 Identity : 1 Inverse : 1/a Distributive law A . (B+C) = A . B + A . C

Boolean Algebra and Logic Gates 논리의 체계적인 조작 : 즉 각 element가 논리적인 값들임. (크기가 있는 것이 아님) 일단 논리의 종류(element의 개수 (ex:참,중간,거짓등))가 여러 개를 가정함 연산자 2개를 정의 (+), (.) Closure Identity element (x+0=0+x=x, x.1=1.x=x Commutative law (x+y=y+x, x.y=y.x) Distributive law (x. (y+z)=(x.y)+(x.z), x+(y.z)=(x+y) .(x+z)) 보수 (complement) (x+x’=1, x.x’=0의 x’ 존재) 2개이상의 다른 종류의 element 존재

Boolean Algebra의 예 0.5.(0.75+0.25) = 0.5.0.75+0.5.0.25 의 분배법칙이 맞는지? {참, 참중간, 중간, 거짓중간, 거짓}의 경우에 다음의 빈칸을 채우시오 AND 참 참중간 중간 거짓중간 거짓 OR 참 참중간 중간 거짓중간 거짓 AND 1 0.75 0.5 0.25 OR 1 0.75 0.5 0.25 0.5.(0.75+0.25) = 0.5.0.75+0.5.0.25 의 분배법칙이 맞는지? 0.25+(1.0) = (0.25+1) .(0.25+0) 의 분배법칙이 맞는지?

Boolean Algebra and Logic Gates X+(y.z)=(x+y) .(x+z)는 일반 대수에서는 성립하지 않음 Boolean algebra에서는 역원이 없슴 일반 대수는 원소가 무한이 많은 실수를 다룸. 하지만 boolean algebra에서는 논리적인 원소들을 다름  현재는 two-value의 원소를 다룸)

Boolean Algebra and Logic Gates Two-Value algebra : B={0,1} Not 연산자의 등장 : element가 두 개밖에 없으므로 가능 x y x.y x y x+y x x’ 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1

Basic Theorems and Properties of Boolean Algebra Duality-책의 증명내용참고(postulate로부터 theorem증명과정임) - interchange OR and And operators and replace 1’s by 0’s and 0’s by 1’s 증명 방법 : 대수적인 방법(예:theorem 1a  x+x=(x+x).1=(x+x)(x+x’)=x+xx’=x+0=x) 과 모든 가능한 조합으로부터의 진리표를 만들어 증명하는 방법 모두 가능 (예: theorem 6(a)- 다다음 슬라이드) Operator precedence 1. Parentheses 2. NOT 3. AND 4. OR

Basic Theorems and Properties of Boolean Algebra 증명 순서 postulate postulate postulate postulate Theorem Theorem

Basic Theorems and Properties of Boolean Algebra Theorem 2(a) 증명 x+1 = 1.(x+1) = (x+x’)(x+1) = x+x’.1 =x+x’ =1 Theorem 6(a) 증명해볼 것 : x+xy = x Theorem 6(a)의 진리표에 의한 증명 x y xy x+xy 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 Theorem 6(b) 증명방법 : duality x+xy = x  x(x+y) = x

Boolean Functions Table 2-1 익힐 것 일반적인 function 의 예 F(x,y) = x+xy

Boolean Functions F1 = x + y'z F2 = x'y'z + x'yz +xy' = x'z(y'+y) + xy' = x'z + xy'(최소 gate이용) F3 = xy + y'z를 gate implementation 및 truth table 작성 하시오.

Boolean Functions – Algebraic Manipulation Ex 2-1) Simplify the following Boolean functions to a minimum number of literals.   1. x(x'+y) = xx' + xy = 0 + xy = xy.   2. x +x'y = (x+x')(x+y) = 1(x+y) = x + y.   3. (x+y)(x+y') = x + xy + xy' + yy' = x(1+y+y') = x. (다른 방법으로 해볼 것)   4. xy + x'z + yz = xy + x'z + yz(x+x')                   = xy + x'z + xyz + x'yz                     = xy(1+z) + x'z(1+y)                    = xy + x'z   5. (x+y)(x'+z)(y+z) = (x+y)(x'+z) : by duality from function 4. (A + B + C)'= (A+x)'      let B+C=x = A'x'          by theorem 5(a)(DeMorgan) = A'(B+C)'     substitute B+C=x   = A'(B'C')      by theorem 5(a)(DeMorgan)   = A'B'C'       by theorem 4(b)(associative) => (A+B+C+D+…+F)' = A'B'C'D'…F' (ABCD…F)' = A' +B'+ C' + D' + … + F'

Boolean Functions – Complement of a Function Ex 2-2) Find the complement of the functions F1=x'yz'+x'y'z, F2=x(y'z'+yz). F1' = (x'yz'+x'y'z)' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z') F2' = [x(y'z'+yz)]' = x'+(y'z'+yz)' = x'+(y'z')'(yz)'  = x'+(y+z)(y'+z') Ex 2-3) Find the complement of the functions F1 And F2 Ex 2-2 by taking their duals and complementing each literal.    DeMorgna’s rule에 의하면 (A+B)’는 A+B의 dual인 AB의 각 literal 을 complement 시킨 A’B’ 와 같음 1. F1 = x'yz' + x'y'z.     The dual of F1 is (x'+y+z')(x'+y'+z)    Complement each literal : (x+y'+z)(x+y+z')=F1' 2. F2 = x(y'z'+yz). The dual of F2 is x+(y'+z')(y+z)이다. Complement each literal : x'+(y+z)(y'+z')=F2'

Canonical and Standard Forms Minterms(standard product) and Maxterms(standard sum)  (m3)’= M3 의 관계 주목할 것

Canonical and Standard Forms Minterms(standard product) and Maxterms(standard sum) m3 = x’yz, M3 = x+y’+z’ m1 = M1 = m6 = M6 = m7 = M7 =

Canonical and Standard Forms f1 = x'y'z+xy'z'+xyz = m1+m4+m7 f2 = x'yz+xy'z+xyz'+xyz = m3+m5+m6+m7 f1 = (x+y+z)(x+y'+z)(x+y'+z' )(x'+y+z')(x'+y'+z) = M0M2M3M5M6 f2 = (x+y+z)(x+y+z‘)(x+y'+z)(x'+y+z)   = M0M1M2M4

Canonical and Standard Forms f = x'y'z+ xy'z'+xyz = m1+m4+m7 =(x+y+z)(x+y'+z)(x+y'+z' )(x'+y+z')(x'+y'+z) = M0M2M3M5M6 m1 m4 m7 f x y z index x'y'z xy'z' xyz 1 2 3 4 5 6 7

Canonical and Standard Forms f = x'y'z+ xy'z'+xyz = m1+m4+m7 =(x+y+z)(x+y'+z)(x+y'+z' )(x'+y+z')(x'+y'+z) = M0M2M3M5M6 M0 M2 M3 M5 M6 f x y z index (x+y+z) (x+y'+z) (x+y'+z') (x'+y+z') (x'+y'+z) 1 2 3 4 5 6 7

Canonical and Standard Forms Sum of Minterms Ex 2-4) Express the Boolean function F=A+B'C in a sum of minterms. A = A(B+B') = AB +AB' = AB(C+C') + AB'(C+C') = ABC + ABC' + AB'C +AB'C' B'C = B'C(A+A') = AB'C + A'B'C F = A + B'C  = A' B'C + AB'C' + AB'C + ABC' + ABC = m1 + m4 + m5 + m6 + m7 = ∑(1, 4, 5, 6, 7) F = xy + x'z  해볼 것 (진리표 방법 먼저 해보고, 이후 식 전개를 통하여 해볼 것)

Canonical and Standard Forms Product of maxterms Ex 2-5) Express the Boolean function F = xy + x'z in a product of maxterm form. F = xy + x'z = (xy+x')(xy+z) = (x+x')(y+x')(x+z)(y+z) = (x'+y)(x+z)(y+z) x' + y= x' + y + zz'= (x'+y+z)(x'+y+z') x + z= x + z + yy'= (x+y+z)(x+y'+z) y + z= y + z + xx'= (x+y+z)(x'+y+z) F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')   = M0M2M4M5 F(x, y, z) = ∏(0, 2, 4, 5) F=A+B'C 해 볼 것

Canonical and Standard Forms Conversion between Canonical Forms F(A, B, C) = ∑(1, 4, 5, 6, 7) F' (A, B, C) = ∑(0, 2, 3) = m0 + m2 + m3 F = (m0+m2+m3)' = m0'm2'm3' = M0M2M3 = ∏(0, 2, 3) , mj' = Mj Ex) F = xy + x'z F(x, y, z) = ∑(1, 3, 6, 7) F(x, y, z) = ∏(0, 2, 4, 5)

Canonical and Standard Forms - Sum of product : F1 = y' +xy + x'yz' - Product of sum : F2 = x(y'+z)(x'+y+z') - Ex) F3 = AB + C(D+E) = AB +CD + CE

Other Logic Operations

Digital Logic Gate

Digital Logic Gate

Digital Logic Gate Extension to Multiple Inputs – 교환,결합법칙이 성립하는 경우 다중입력으로 쉽게 확장 (AND, OR 의 경우) AND 의 경우 : (xy)z=x(yz)=3 input 의 xyz gate x y x z y z x y z OR 의 경우도 성립 : (x+y)+z = x+(y+z) = 3 input 의 OR gate

F = [(ABC)'(DE)']' = ABC + DE Digital Logic Gate Extension to Multiple Inputs – 다른 연산은 체크해보아야 함 The NAND and NOR operators are not associative. (x↓y)↓z≠x↓(y↓z)  NOR (x↓y)↓z= [(x+y)'+z]' = (x+y)z'= xz' + yz' x↓(y↓z)= [x+(y+z)'] ' = x'(y+z)= x'y + x'z x↓y↓z= (x+y+z)' x↑y↑z= (xyz)'  NAND F = [(ABC)'(DE)']' = ABC + DE

Digital Logic Gate - exclusive-OR (교환, 결합법칙 성립) Positive and Negative Logic

Digital Logic Gate Positive and Negative Logic H=1, L=0 일때, AND gate H=0, L=1 일때, OR gate H H H H L L L H L L L L