Page 1 Science Payload and Advanced Concepts Office STJs as Photon Detectors.

Slides:



Advertisements
Similar presentations
Diode detector (PIN photo diode detector)
Advertisements

X-Ray Astronomy Lab X-rays Why look for X-rays? –High temperatures –Atomic lines –Non-thermal processes X-ray detectors X-ray telescopes The Lab.
1 Space Sciences Lab, UC Berkeley, CA, USA High performance microchannel plate detectors for UV/visible Astronomy Dr. O.H.W. Siegmund Space Sciences Laboratory,
Optical Astronomy Imaging Chain: Telescopes & CCDs.
The HEROES Balloon- borne Hard X-ray Telescope Colleen A. Wilson-Hodge, J. Gaskin, S. Christe, A. Shih, K. Kilaru, D.A. Swartz, A. F. Tennant, B. Ramsey.
Astronomical Detectors
X-ray Astronomy Lee Yacobi Selected Topics in Astrophysics July 9.
NIST ARDA/DTO review 2006 Materials David P. Pappas Seongshik Oh Jeffrey Kline.
Dark Current Measurements of a Submillimeter Photon Detector John Teufel Department of Physics Yale University Yale: Minghao Shen Andrew Szymkowiak Konrad.
R. M. Bionta SLAC November 14, 2005 UCRL-PRES-XXXXXX LCLS Beam-Based Undulator K Measurements Workshop Use of FEL Off-Axis Zone Plate.
1 Anomaly in fabrication processes for large-scale array detectors of superconducting tunnel junctions M. Ukibe, Y. Chen, Y. Shimizugawa, Y. Kobayashi,
CCD Detectors in High- Resolution Biology Jian Guan
Overview of Scientific Imaging using CCD Arrays Jaal Ghandhi Mechanical Engineering Univ. of Wisconsin-Madison.
Xiaodong Wang ( 王晓冬 ) School of Nuclear Science and Technology Lanzhou University, Lanzhou, China MPGD activities at Lanzhou University July 5, 2013.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze: Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS Detection.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
X-ray radiation damage of silicon strip detectors AGH University of Science and Technology Faculty of Physics and Applied Computer Science, Kraków, Poland.
Monte Carlo simulation of the imaging properties of a scintillator- coated X-ray pixel detector M. Hjelm * B. Norlin H-E. Nilsson C. Fröjdh X. Badel Department.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
X-ray CCD Detectors for Astronomy and Space Science
Development of Superconducting Tunnel Junction Photon Detector with SOI Preamplifier board to Search for Radiative decays of Cosmic Background Neutrino.
Salvatore Tudisco The new generation of SPAD Single Photon Avalanche Diodes arrays I Workshop on Photon Detection - Perugia 2007 LNS LNS.
MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT
Detection plan for STEIN, telescope of the space mission CINEMA 1 August 3td 2011-Diana Renaud.
M. McConnell1, J. R. Macri, J. M. Ryan, K. Larson, L. -A. Hamel, G
10/26/20151 Observational Astrophysics I Astronomical detectors Kitchin pp
Biomedical Mechatronics Lab M ONTE C ARLO M ODELING AND A NALYSIS OF S TRUCTURED C S I S CINTILLATOR - COUPLED P IXEL D ETECTORS Chang Hwy Lim, Ho Kyung.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Munich-Centre for Advanced Photonics A pixel detector system for laser-accelerated ion detection Sabine Reinhardt Fakultät für Physik, Ludwig-Maximilians-Universität.
Complete analysis of STJ detector performance via absorption of phonon pulses M. Stokes, K. Wigmore, A. Kozorezov, Physics Department, Lancaster University,
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Performances of epitaxial GaAs detectors E. Bréelle, H. Samic, G. C. Sun, J. C. Bourgoin Laboratoire des Milieux Désordonnés et Hétérogènes Université.
Development of CCDs for the SXI We have developed 2 different types of CCDs for the SXI in parallel.. *Advantage =>They are successfully employed for current.
Development of an Antenna-coupled Al Superconducting Tunnel Junction for a detection of cosmic microwave background B-mode polarization H. Ishino 4, M.
PAUL SCHERRER INSTITUT M. Furlan I. Jerjen E. Kirk Ph. Lerch A. Zehnder Cryogenic Detectors Development at PSI.
C03 High speed photon number resolving detector with titanium transition edge sensors Daiji Fukuda, Go Fujii, R.M.T. Damayanthi, Akio Yoshizawa, Hidemi.
State of the art on epitaxial GaAs detectors
Cryogenic Detectors and Test Infrastructure at the University of Leicester G.W. Fraser Space Research Centre, Michael Atiyah Building, Department of Physics.
DØ Central Tracker Replaced with New Scintillating Fiber Tracker and Silicon Vertex Detector The DØ Central Detector Upgrade The DØ Detector is a 5000.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
Photodetectors What is photodetector (PD)? Photodetector properties
Phonon-Mediated Distributed Transition- Edge-Sensor X-ray Detectors Steven W. Leman Department of Nuclear Engineering and Management, The University of.
Astronomical Observational Techniques and Instrumentation
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
Solid State Detectors - Physics
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
General detectors. CCDs Charge Coupled Devices invented in the 1970s Sensitive to light from optical to X-rays In practice, best use in optical and X-rays.
Active Pixel Sensors in Medical and Biologi The application of Large Area Active Pixel Sensor (LAS) to high resolution Nuclear Medicine imaging Bob Ott.
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
Chapter V Radiation Detectors.
3D Position Sensitive CdZnTe Spectrometers Using 3 rd -Generation VAS/TAT Readout Electronics Feng Zhang, Zhong He, Glenn F. Knoll, David K. Wehe, James.
Avalanche Photodiodes from the Start.
ICT 1 SINTEF Edge-On Sensor with Active Edge Fabricated by 3D-Technology T. E. Hansen 1), N. Ahmed 1), A. Ferber 2) 1) SINTEF MiNaLab 2) SINTEF Optical.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
Development of the X-ray Detectors for XTP Cao Xue-lei Institute of High Energy Physics, CAS IHEP, Beijing.
DESCRIPTION OF PIXIRAD  The PIXIRAD Imaging Counter is an INFN-Pisa Spin-off  It works in photon counting  Pulse discrimination with two thresholds.
CdTe prototype detector testing Anja Schubert The University of Melbourne 9 May 2011 Updates.
Comparison of a CCD and the Vanilla CMOS APS for Soft X-ray Diffraction Graeme Stewart a, R. Bates a, A. Blue a, A. Clark c, S. Dhesi b, D. Maneuski a,
Topic Report Photodetector and CCD
Low Temperature Detector Design for the particle search Kim Seung Cheon (DMRC,SNU)
It converts light energy into electrical energy.
Charge Coupled Device Advantages
Astronomical Observational Techniques and Instrumentation
Illustration of MIS-C and the characterization of the device structure
E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A
Presentation transcript:

Page 1 Science Payload and Advanced Concepts Office STJs as Photon Detectors

Page 2 Science Payload and Advanced Concepts Office STJs: principle of operation photon with energy E breaks Cooper pairs  quasiparticles for Ta:  ~0.7 meV  N 0 ~ 850 / eV multiple tunneling  detected charge: resolving power limited by statistics of QP generation and tunneling: Ta:  E ~ 2.0 E=500eV Additional resolution degradation: - electronics noise, infrared background - non-uniform detector response

Page 3 Science Payload and Advanced Concepts Office STJs: energy resolving power

Page 4 Science Payload and Advanced Concepts Office Ta-based STJs (for UV/visible) Ta layers: 100 nm Base: epitaxial (RRR~45) Al layers: 30 nm Nb wiring (QP out diffusion) AlOx barrier: ~1 nm  tunnel time ~  s low leakage: <0.1 pA/  m 2 detector area: 10x x100  m 2 Al Ta Sapphire substrate SiOx Nb Back-illumination Front-illumination

Page 5 Science Payload and Advanced Concepts Office S-Cam 3 Detector: 10x12 Ta/Al STJs 371  m = 8.9” 446  m = 10.7” S-Cam 3: 10x12 pixels ; 33x33  m 2 FOV = 9x11 arcsec 170  m = 4” S-Cam 2:

Page 6 Science Payload and Advanced Concepts Office S-Cam 3 Detector 120 pixels ALL subgap currents ~100 pA  low noise operation Uniform responsivity across array Fiske modes Residual Jc Bias region

Page 7 Science Payload and Advanced Concepts Office S-Cam 3 image (9”x11”)

Page 8 Science Payload and Advanced Concepts Office S-Cam 6: improved spectral resolution Aluminium STJs: Tc=1.2K  T<100mK (ADR) expected resolution 2x better than Ta Measured resolution ~ Ta (mechanism and solution under investigation) Next step: molybdenum STJs: Tc=0.9K better efficiency than Al

Page 9 Science Payload and Advanced Concepts Office Distributed Read Out Imaging Devices (DROIDs) absorber with 2 STJs for readout: Position sensitivity: S1 - S2 Photon energy:S1 + S2 sapphire substrate SiOx Al (65 nm) AlOx Nb contacts Ta top electrode 200  m 50  m Ta absorber

Page 10 Science Payload and Advanced Concepts Office 100x20  m 2 absorber with 20x20  m 2 STJs  E=2.4 eV (FWHM) at E=500 eV DROIDs as X-ray detectors

Page 11 Science Payload and Advanced Concepts Office 100x100  m 2 absorber with 20x20  m 2 STJs 2D DROIDs as X-ray detectors 10 keV diffraction pattern from 5  m pinhole with 2-D DROID

Page 12 Science Payload and Advanced Concepts Office Detection efficiency for 500nm thick DROIDs Ta Mo

Page 13 Science Payload and Advanced Concepts Office Possible detector layout for NFI1 on XEUS Array of DROIDs 0.5x1.7 arcmin FL=30m  4.4x15mm 750x75 micron DROIDs  6x200 DROIDs 1.7’ = 15mm = 200 DROIDs 0.5’ = 4.4mm = 6 DROIDs

Page 14 Science Payload and Advanced Concepts Office Latest Ta/Al STJs for optical Ta layers: 100 nm Base: epitaxial (RRR~30) Al layers: 30 nm Nb wiring (QP out diffusion) AlOx barrier: ~1 nm  tunnel time ~  s low leakage: <0.1 pA/  m 2 detector area: 10x x100  m 2

Page 15 Science Payload and Advanced Concepts Office Latest Ta/Al STJs for optical

Page 16 Science Payload and Advanced Concepts Office Latest Ta/Al STJs for optical: resolving power