A viable RS Model for Quarks and Leptons with T´ Flavor Symmetry Felix Yu University of California, Irvine Pheno 2010 M-C. Chen, K. T. Mahanthappa, FY.

Slides:



Advertisements
Similar presentations
Neutrino mass matrix in triplet Higgs Models with A_4 Symmetry Myoung Chu Oh Miami 2008, Dec. 17, 2008 Based on work with Seungwon Baek.
Advertisements

Obtaining a nonzero  13 in lepton models based on SO(3)  A 4 Yuval Grossman and Wee Hao Ng, Cornell University Phenomenology 2014 arXiv: [hep-ph]
Resonant Leptogenesis In S4 Model Nguyen Thanh Phong Cantho University In cooperation with Prof. CSKim, SKKang and Dr. YHAhn (work in progress)
Higher dimensional seesaw Atsushi WATANABE Niigata Univ. & The Max-Planck-Institute for Nuclear Physics 23 rd February HRI, Allahabad Based on the.
Non-zero |U e3 | and Quark-Lepton in Discrete Symmetry Y.H.Ahn based on Phys.Rev.D83:076012,2011. working with Hai-Yang Cheng and S.C.Oh 년 8 월 17.
Morimitsu TANIMOTO Niigata University, Japan Prediction of U e3 and cosθ 23 from Discrete symmetry XXXXth RENCONTRES DE MORIOND March 6, La Thuile,
TeV scale see-saws from higher than d=5 effective operators Neutrino masses and Lepton flavor violation at the LHC Würzburg, Germany November 25, 2009.
Hep-ph/ , with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) New Ideas in Randall-Sundrum Models José Santiago Theory Group (FNAL)
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Maximal Flavor Violation based on work in: 1. arXiv/ AR & Shaouly Bar-Shalom 2. arXiv/ AR, Daniel Whiteson, Felix Yu & Shaouly Bar-Shalom.
Higgs Quadruplet for Type III Seesaw and Implications for → e and −e Conversion Ren Bo Coauther : Koji Tsumura, Xiao - Gang He arXiv:
Fermion Masses and Unification Steve King University of Southampton.
Neutrinos and Flavour G.G.Ross, Coseners House, May 03 What is the origin of the Quark and lepton masses, mixing angles and CP violating phases? Family?
June 18, 2004Mitsuru Kakizaki1 Democratic (s)fermions and lepton flavor violation Mitsuru Kakizaki (ICRR, University of Tokyo) June 18, 2004 We propose.
May 25, 2004Kakizaki, Mitsuru1 Flavor structure in supersymmetric models Kakizaki, Mitsuru (ICRR, University of Tokyo) May 25, 2004 We proposed a new alignment.
Aug. 16, 2003Mitsuru Kakizaki1 Democratic (s)fermions and lepton flavor violation Mitsuru Kakizaki ( Tohoku Univ. ) Aug. 16, 2003 Ref.: K. Hamaguchi, M.
Oct. 25, 2004Mitsuru Kakizaki1 Flavor structure in supersymmetric models Mitsuru Kakizaki (ICRR, University of Tokyo) Oct. 25, Ochanomizu University.
B. Dutta Texas A&M University Phys.Rev.Lett.100:181801,2008; arXiv: ; To appear Grand Unified Models, Proton Decay and Phase of Collaborator: Yukihiro.
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
Models of Neutrino Mass G.G.Ross, IPPP December 2005 Origin of mass and mass hierarchy What do we learn from the mixing angles?
Fermion Masses and Unification Steve King University of Southampton.
CUSTODIAL SYMMETRY IN THE STANDARD MODEL AND BEYOND V. Pleitez Instituto de Física Teórica/UNESP Modern Trends in Field Theory João Pessoa ─ Setembro 2006.
Soft Leptogenesis in Warped Extra Dimensions Anibal D. Medina Department of Astronomy and Astrophysics The University of Chicago and Argonne National Laboratory.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
Neutrino Mass and Grand Unification of Flavor R. N. Mohapatra Goranfest, June 2010 Split.
Fermion Masses G.G.Ross, Corfu, September 2005 The Standard Model.
Introduction to Gauge Higgs unification with a graded Lie algebra Academia Sinica, Taiwan Jubin Park (NTHU)  Collaboration with Prof. We-Fu.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
Kaluza-Klein gluon production at the LHC
Two Higgs doublets model in gauge-Higgs unification framework Yonsei University Jubin Park (SNUT)  Collaboration with Prof. We-Fu Chang,
Minimal SO(10)×A4 SUSY GUT ABDELHAMID ALBAID In Collaboration with K. S. BABU Oklahoma State University.
Presented at 24 th Rencontres de Blois, Chateaux, France, 27 May – 1 June 2012.
2. Two Higgs Doublets Model
Texture of Yukawa coupling matrices in general two-Higgs doublet model Yu-Feng Zhou J. Phys. G: Nucl. Part. Phys.30 (2004) Presented by Ardy.
Symmetry of Fermion Mixing C.S. Lam McGill and UBC, Canada arXiv: (to appear in Phys. Lett)
Hep-ph/ , with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) Light KK modes in Custodially Symmetric Randall-Sundrum José Santiago Theory.
Neutrinos and the Flavour Puzzle: A Mini-Review Stefan Antusch Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) University of Basel Department.
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
Lepton flavour and neutrino mass aspects of the Ma-model Alexander Merle Max-Planck-Institute for Nuclear Physics Heidelberg, Germany Based on: Adulpravitchai,
Oct, 2003WIN'03, Katri Huitu1 Probing the scalar sector with ZZH outline: Introduction Models: higher representations radion (nonSUSY/SUSY) Conclusions.
Family Symmetry Solution to the SUSY Flavour and CP Problems Plan of talk: I.Family Symmetry II.Solving SUSY Flavour and CP Problems Work with and Michal.
Quark Mass Matrix from Dimensional Deconstruction Academia Sinica Andrea Soddu Taipei November 17, 2004 National Taiwan University P.Q Hung, A.S., N.-K.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia NO-VE 2006: ``Ultimate.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
1 Enhancement of in supersymmetric unified models Yukihiro Mimura (National Taiwan University) Talk at SUSY2015, Lake Tahoe.
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
Report on New Physics Subgroup Activities Nobuchika Okada (KEK) 5th general meeting of the ILC physics working group May 31, KEK Past activities.
ArXiv: Unitarity Tests of Mixing Matrices The quark sector.
Geometric -Mass Hierarchy & Leptogenesis Zhi-zhong Xing (IHEP, Beijing)  A Conjecture + An Ansatz  Seesaw + Leptogenesis  -Mixing + Baryogenesis Z.Z.X.,
Duality in Left-Right Symmetric Seesaw Mechanism Michele Frigerio Service de Physique Théorique, CEA/Saclay Rencontres de Physique des Particules March.
PHENOMENOLOGY OF A THREE-FAMILY MODEL WITH GAUGE SYMMETRY Villada Gil, Stiven Sánchez Duque, Luis Alberto.
Quark-Lepton Complementarity in light of recent T2K & MINOS experiments November 18, 2011 Yonsei University Sin Kyu Kang ( 서울과학기술대학교 )
BEYOND MFV IN FAMILY SYMMETRY THEORIES OF FERMION MASSES Work done with Zygmunt Lalak and Graham Ross Based on existing ideas but, hopefully, contributing.
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Family Gauge Bosons with an Inverted Mass Hierarchy Yoshio Koide (Osaka University) in collaboration with Toshifumi Yamashita (Maskawa Insititute, KSU)
Mixing in Quarks and Leptons Xiao-Gang He NTU&SJTU NTU&SJTU 1. Mixing in Quarks and Neutrinos 2. Unitarity Tests of Mixing Matrices 3. Some Recent Hints.
Introduction to Flavor Physics in and beyond the Standard Model Enrico Lunghi References: The BaBar physics book,
The Discrete Road to lepton masses and mixings Daniel Hernandez ICTP D. H. and A. Yu. Smirnov, ; arXiv: arXiv: , arXiv: arXiv:
Hunting for Hierarchies in PSL 2 (7) MICHAEL JAY PEREZ PHENOMENOLOGY 2015 MAY 5, 2015 ARXIV : /
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
and what we unsuccessfully tried to explain (so far)
A New Family Symmetry: Discrete Quaternion Group
B-Anomalies related to leptons and LFUV
The Flavor of the Composite Twin Higgs
Andreas Crivellin Right-handed effects in Vub (and Vcb)
Implications of D-Mixing for New Physics
Methods of Experimental Particle Physics
Kaluza-Klein states and the geography of extra dimensions
Yoshio Koide University of Shizuoka
Presentation transcript:

A viable RS Model for Quarks and Leptons with T´ Flavor Symmetry Felix Yu University of California, Irvine Pheno 2010 M-C. Chen, K. T. Mahanthappa, FY – Phys. Rev. D 81, (2010) [arXiv: [hep-ph]]

Motivation Fermion mass hierarchy unexplained Gauge hierarchy problem motivates new physics at about TeV Randall-Sundrum (RS1) model with bulk fermions provides a good framework –Can get fermion mass hierarchy with O(1) coefficients –Need to suppress FCNCs

Randall-Sundrum RS1 Model – warped geometry –5 th dimension compactified via S 1 /  2 –Higgs field confined to TeV brane (y =  R), other fields propagate in bulk –From compactification and boundary conditions, can find Fourier modes for bulk fields –SM masses and mixings arise from zero modes Integrate out y to find overlap between SM fields and Higgs Gherghetta, Pomarol (2000), Huber, Shafi (2000), Grossman, Neubert (1999) Randall, Sundrum (1999)

Flavor Changing Neutral Currents in RS Change from gauge interaction basis to mass basis Generically get FCNCs if bulk masses are not equal Solutions: (1) alignment, (2) degeneracy †

The Finite Group T´ Double covering of A4 –A4 is the discrete invariant rotations of a tetrahedron Has two generators: S=(1234)  (4321), T=(1234)  (2314) –S 2 =R, T 3 =1, (ST) 3 =1, R 2 =1 R=1: 1, 1´, 1´´, 3 (vector) [use for leptons] R=-1: 2, 2´, 2´´ (spinorial) [use for quarks] Frampton, Kephart (1995)

Assignment of T´ Representations Motivated by neutrino mixing data: assign L ~ 3 (LH lepton doublets), N ~ 3 (RH neutrinos) under T to obtain the tri-bimaximal mixing pattern –Introduce e ~ 1,  ~ 1 ,  ~ 1 for charged lepton masses –Tree-level lepton FCNCs are eliminated via degeneracy (left- handed lepton doublets share a common bulk mass term) and alignment (right-handed lepton singlets can freely rotate) Motivated by quark masses, use 2  1 assignment –Tree-level quark FCNCs involving first and second generations are eliminated via degeneracy (up- and down- type first two generations share a common bulk mass term) Require additional flavon fields to break T symmetry on the IR brane

Leptons in T´ Purely Dirac neutrino masses Seesaw type 1 neutrino masses

Quarks in T´: 2  1 Framework Down-type Yukawa Lagrangian is exactly analogous

Parameter Counting Input parameters (Naïve counting) –Charged lepton: 8 (= 4 bulk + 3 Yukawa + 1 flavon) –Neutrino: [seesaw] 6 [7] (= 2 bulk + 2 [3] Yukawa + 2 flavon) –Quark: 24 = (6 bulk + 8 Yukawa + 10 flavon) Actual number of independent input combinations –16 = Lepton matrix (3) + Neutrino matrix (2) + Quark matrices (6 + 5) Contrast with anarchic case –36 [30] for leptons, 36 for quarks Fit parameters –Lepton and quark masses (3 + 6 = 9) –CKM matrix (+ CP violating phase) (3 + 1 = 4) –Neutrino mixing angles (3) 16 Inputs, 16 Outputs

Results –Leptons Set all leptonic Yukawas to 1. Renormalization effects negligible. Gives m e =511 keV, m  =105.7 MeV, m  =1.777 GeV For normal hierarchy For inverted hierarchy Normal, Dc:  m sol 2 =  eV 2,  m atm 2 =  eV 2 Inverted, SS:  m sol 2 =  eV 2,  m atm 2 = –  eV 2 Experimental:  m sol 2 = 7.65  eV 2,  m atm 2 = 2.40  eV 2 Fusaoka, Koide (1998), Schwetz, Tortola, Valle (2008) Normal, SS:  m sol 2 =  eV 2,  m atm 2 =  eV 2 For normal hierarchy

Results – Quarks Bulk mass parameters Flavons and Yukawas Prediction (3 TeV)Fit bounds mumu 1.49 MeV MeV mdmd 2.92 MeV2-4 MeV mcmc GeV0.56 ± 0.04 GeV msms 36.6 MeV47 ± 12 MeV mtmt GeV136.2 ± 3.1 GeV mbmb 2.41 GeV2.4 ± 0.04 GeV Csaki, Falkowski, Weiler (2008) Other Yukawas set to 1

Results – CKM and Jarlskog Fusaoka, Koide (1998), Charles, et al. (CKMfitter Group) (2009) Corrections to quark mixings from running are small. Perform fit at m Z

Leading FCNC Estimate Leading contribution is from dim-6 operators arising from fermion zero-modes mixing with KK modes Scaled to Z-coupling, leading contribution is Using M KK ~ 3 TeV, kR ~ 11, v = 246 GeV: –coefficient is  for u-c transition –coefficient is  for d-s transition

Conclusions RS1 + T´ provides a framework for realistic fermion masses and mixings –Motivated by neutrino mixings and quark masses, we choose T´ representations This choice eliminates tree-level lepton FCNCs and first- second generation quark FCNCs –Can fit for all SM fermion masses, CKM matrix, and Jarlskog invariant with 16 input parameter combinations –Allows a low first KK mass scale, testable at colliders

Group Algebra of T´ 2 S=A 1, T=  A 2, 2´ S=A 1, T=  2 A 2, 2´´ S=A 1, T=A 2 1 S=1, T=1, 1´ S=1, T= , 1´´ S=1, T=  2 Feruglio, Hagedorn, Lin, Merlo (2007) 3

Neutrino Constraints Neutrino measurements (at 2  ) (at 1  ) Well-fit by Tri-Bimaximal Mixing (TBM) Harrison, Perkins, Scott (1999) TBM can be easily obtained from A4 or T´ group symmetries Schwetz, Tortola, Valle (2008) Ma, Rajasekeran (2001)

Leptons in T´ T´ contraction: Diagonal charged lepton mass matrix because of T´ assignments and flavon VEVs

Quarks in T´: The 2  1 Framework 2  1

Quarks in T´: The 2  1 Framework 2  1

Citations C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008) S. Bar-Shalom and A. Rajaraman, Phys. Rev. D 77, (2008). arXiv: [hep-ph] S. Bar-Shalom, A. Rajaraman, D. Whiteson, FY, Phys. Rev. D 78, (2008). arXiv: [hep-ph] CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, (2005). arXiv:hep-ph/ M.C. Chen and S.F. King, arXiv: [hep-ph] M.C. Chen and K.T. Mahanthappa, arXiv: [hep-ph] V. Cirigliano, B. Grinstein, G. Isidori and M. B. Wise, Nucl. Phys. B 728, 121 (2005). arXiv:hep-ph/ G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/ G. Engelhard, J.L. Feng, I. Galon, D. Sanford and FY, arXiv: [hep-ph] J.L. Feng, C.G. Lester, Y. Nir and Y. Shadmi, Phys. Rev. D 77, (2008) arXiv: [hep-ph]. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Nucl. Phys. B 775, 120 (2007) arXiv:hep-ph/ P.H. Frampton and T.W. Kephart, Int. J. Mod. Phys. A 10, 4689 (1995). arXiv:hep-ph/ T. Gherghetta and A. Pomarol, Nucl. Phys. B 586, 141 (2000). arXiv:hep-ph/ Y. Grossman and M. Neubert, Phys. Lett. B 474, 361 (2000). arXiv:hep-ph/ P.F. Harrison, D.H. Perkins and W.G. Scott, Phys. Lett. B 458, 79 (1999). arXiv:hep-ph/ S.J. Huber and Q. Shafi, Phys. Lett. B 544, 295 (2002). arXiv:hep-ph/ C.I. Low and R.R. Volkas, Phys. Rev. D 68, (2003). arXiv:hep-ph/ E. Ma and G. Rajarasekaran, Phys. Rev. D 64, (2001). arXiv:hep-ph/ L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/ L. Randall and R. Sundrum, Phys. Rev. Lett 83, 3370 (1999). arXiv:hep-ph/ L. Randall and R. Sundrum, Nucl. Phys. B 557, 79 (1999). arXiv:hep-th/ T. Schwetz, M. Tortola and J.W.F. Valle, New J. Phys. 10, (2008). arXiv: [hep-ph]