Reinvestigation of the ground and first torsional states of methylformate M. Carvajal, Universidad of Huelva (Spain) F. Willaert and J. Demaison, Université.

Slides:



Advertisements
Similar presentations
+ TERAHERTZ SPECROSCOPY OF METHYLAMINE R. A. Motiyenko, L. Margulès Laboratoire PhLAM, Université Lille 1, France V.V. Ilyushin, E.A. Alekseev Insitute.
Advertisements

A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
CHARACTERIZATION AND FORMATION PROCESSES OF C 4 -, C 4 H and C 4 H - M. L. SENENT Departamento de Astrofísica Molecular e Infrarroja, Instituto de Estructura.
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
STRUCTURE AND ROTATIONAL DYNAMICS OF ISOAMYL ACETATE AND METHYL PROPIONATE STUDIED BY MICROWAVE SPECTROSCOPY W.STAHL, H. V. L. NGUYEN, L. SUTIKDJA, D.
WH04 NUMERICAL AND EXPERIMENTAL ASPECTS OF DATA ACQUISITION AND PROCESSING IN APPLICATION TO TEMPERATURE RESOLVED 3-D SUB-MILLIMETER SPECTROSCOPY FOR ASTROPHYSICS.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
60th OSU International Symposium on Molecular Spectroscopy TF03 The millimeter-wave rotational spectrum of lactic acid Zbigniew Kisiel, Ewa Białkowska-Jaworska,
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
ROTATIONAL SPECTRUM AND LARGE AMPLITUDE MOTIONS OF 3,4-, 2,5- and 3,5- DIMETHYLBENZALDEHYDE I. KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques.
Molecular Spectroscopy Symposium June 2009 The Submillimeter Spectrum of the Ground Torsional State of CH 2 DOH J.C. PEARSON, C.S. BRAUER, S.
Observing organic molecules in interstellar gases: Non equilibrium excitation. LAURENT WIESENFELD, ALEXANDRE FAURE, Grenoble, France ANTHONY REMIJAN, National.
The ground state rotational spectrum of methanol Rogier Braakman Chemistry & Chemical Engineering California Institute of Technology John C. Pearson Brian.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
Unbiased Spectral Survey of the low mass protostar IRAS A
Synchrotron-Based High Resolution Spectroscopy of N-Bearing PAHs Sébastien Gruet, Olivier Pirali, Manuel Goubet and P. Bréchignac ISMS /06/2014.
66th OSU International symposium on molecular spectroscopy
DIMETHYL -ETHER THREE DIMENTIONAL SPECTRA M. VILLA U.A.M.-I. (México) and M. L. SENENT C.S.I.C. (Spain)
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
MM-Wave Rotational Spectrum of Methyl Nitrate Jessica Thomas, Ivan Medvedev, Department of Physics, Wright State University David Dolson Department of.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
The Millimeter- and Submillimeter-Wave Spectrum of Propenal A. M. DALY, C. BERMÚDEZ, L. KOLESNIKOVÁ, AND J. L. ALONSO Grupo de Espectroscopia Molecular.
Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone Yueyue Zhao 1, Ha Vinh Lam Nguyen 2, Wolfgang Stahl 1, Jon T. Hougen 3 1 Institute.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
THEORETICAL INVESTIGATION OF LARGE AMPLITUDE MOTION IN THE METHYL PEROXY RADICAL Gabriel Just, Anne McCoy and Terry Miller The Ohio State University.
The Complete, Temperature Resolved Spectrum Of Methyl Formate Between 214 and 265 GHz JAMES P. MCMILLAN, SARAH M. FORTMAN, CHRISTOPHER F. NEESE, and FRANK.
A NEW PROGRAM FOR NON- EQUIVALENT TWO-TOP INTERNAL ROTORS WITH A C s FRAME Isabelle KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
Update of the analysis of the pure rotational spectrum of excited vibrational states of CH 3 CH 2 CN Adam Daly, John Pearson, Shanshan Yu, Brian Drouin.
International Symposium on Molecular Spectroscopy, June 22-26, First high-resolution analysis of the ν 21 band of propane at cm -1 : Evidence.
P. JANSEN, W. UBACHS, H. L. BETHLEM
Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. Ivan Smirnov a, Eugene Alekseev a, Vadim Ilyushin.
June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b.
(Toho Univ. a, Univ. Toyama b ) Chiho Fujita a, Hiroyuki Ozeki a, and Kaori Kobayashi b 2015 Jun 22ndInternational Symposium on Molecular Spectroscopy,
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
Terahertz spectroscopy of deuterated methylene bi-radicals, CHD and CD 2 Stéphane Bailleux June 25, 2015 – 70 th ISMS.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
A New Hybrid Program For Fitting Rotationally Resolved Spectra Of methylamine-like Molecules: Application to 2-Methylmalonaldehyde Isabelle Kleiner a and.
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Analysis of the rotation-torsion spectrum of CH 2 DOH within the e 0, e 1, and o 1 torsional levels L. H. Coudert, a John C. Pearson, b Shanshan Yu, b.
The Microwave Spectrum of the Mono Deuterated Species of Methyl Formate HCOOCH 2 D L. H. Coudert, a L. Margulès, b G. Wlodarczak, b and J. Demaison b a.
Microwave Spectroscopy of the Excited Vibrational States of Methanol John Pearson, Adam Daly, Jet Propulsion Laboratory, California Institute of Technology,
Analysis of the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev,
MILLIMETRE-WAVE SPECTRUM OF ISOTOPOLOGUES OF ETHANOL FOR RADIO-ASTRONOMY Adam Walters, IRAP, Université de Toulouse, UPS-OMP-CNRS, France. Mirko Schäfer,
What is internal rotation ? The methyl group can turn relatively to the rest of the molecule and this large amplitude motion is hindered by a three-fold.
The microwave spectroscopy of HCOO13CH3 in the second excited state
The microwave spectroscopy of ground state CD3SH
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
THE TORSIONAL FUNDAMENTAL BAND AND ROTATIONAL SPECTRA UP TO 940 GHZ OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE V.V. Ilyushin1,
MILLIMETER WAVE SPECTRUM OF NITROMETHANE
Acetaldehyde: Into the Submillimeter
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
A. Jabri, I. Kleiner, L. Margulès, R. Motyenko, J-C. Guillemin, E. A
Analysis of torsional splitting in the ν8 band of propane near 870
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Reinvestigation of the ground and first torsional states of methylformate M. Carvajal, Universidad of Huelva (Spain) F. Willaert and J. Demaison, Université de Lille (France) I.Kleiner, CNRS, Université Paris 7 et 12 (France)

Chemical structure, principal axes and direction of the dipole moment of methyl formate [R. F. Curl, J. Chem. Phys. 30, (1959)]. The a-b plane is a plane of symmetry

Interstellar Detection of Methyl Formate, HC(O)OCH3 Typical hot core molecule. It is very abundant in massive star-forming regions. It was detected first in Sgr B2 by R. D. Brown, J. G. Crofts, P. D. Godfrey, F. F. Gardner, B. J. Robinson, and J. B. Whiteoak, Discovery of Interstellar Methyl Formate Astrophys. J. 197, L29–L31 (1975). Discovery of Interstellar Methyl Formate Also detected toward low-mass star-forming regions: S. Cazaux, A. G. G. M. Tielens, C. Ceccarelli, A. Castets, V. Wakelam, E. Caux, B. Parise, D. Teyssier, The Hot Core around the Low-mass Protostar IRAS : Scoundrels Rule! Astrophys. J. 593, L51–L55 (2003). The Hot Core around the Low-mass Protostar IRAS : Scoundrels Rule! v t = 1 detected in Orion for the first time! K. Kobayashi, K. Ogata, S. Tsunekawa, and S. Takano, Torsionally Excited Methyl Formate in Orion KL Astrophys. J. 657, L17–L19 (2007). Torsionally Excited Methyl Formate in Orion KL

-[BRO75] R.D. Brown, J.G. Crofts, F.F. Gardner, P.D. Godfrey, B.J. Robinson, J.B. Whiteoak, Astrophys. J. 197, L29-L31 (1975). -[BAU79] A. Bauder, J. Phys. Chem. Ref. Data 8, (1979). -[DEM83] J. Demaison, D. Boucher, A. Dubrulle, B.P. Van Eijck, J. Mol. Spectrosc. 102, (1983). -[PLU84] G.M. Plummer, G.A. Blake, E. Herbst, F.C. De Lucia, Astrophys. J. Suppl. 55, (1984). -[PLU86] G.M. Plummer, E. Herbst, F.C. De Lucia, G.A. Blake, Astrophys. J. Suppl. 60, (1986) -[OES99] L.C. Oesterling, S. Albert, F.C. De Lucia, K.V.L.N. Sastry, E. Herbst, Astrophys. J. 521, (1999). PREVIOUS STUDIES

[TYAM04] Tsunekawa Lab, Toyama University (Japan) Global Fit of Rotational Transitions of Methyl Formate (HCOOCH3) in the Ground and First Excited Torsional States, K. Ogata, H. Odashima, K. Takagi, and S. Tsunekawa, J. Mol. Spectrosc. 225, (2004). RMS = 1.96, 3862 lines, 69 parameters Analysis of Rotational Transitions of Methyl Formate in the Ground and First Excited Torsional States, H. Odashima, K. Ogata,Y. Karakawa, K. Takagi, and S. Tsunekawa, Molecules 8, (2003). The Microwave Spectrum of Methyl Formate (HCOOCH3) in the Frequency Range from 7 to 200 GHz, Y. Karakawa, K. Oka, H. Odashima, K.Takagi, and S. Tsunekawa, J. Mol. Spectrosc. 210, (2001).

OSU FASST MEASUREMENTS A. Maeda, I. Medvedev, E. Herbst, F. De Lucia and P. Groner FASSST spectrometer, ERHAM program Each torsional states is fitted by itself. (whereas in our approach all states are treated simultaneously)

Goals of this study were: Further studies of MF are needed because: 1)For astrophysical purposes: his formation mechanism is still not yet understood 2)Detection of torsional excited states informs on the temperature of the medium 3)The GHz spectral range : interest for astronomers because the radiotelescopes in development (HERSCHEL, ALMA, SOFIA) will operate in this sub-millimeterwave range (and up to the FIR range)  accurate predictions (extended at high J and K) for methyl formate are needed 4) Even though the MW spectrum of MF is complex and dense, it is a rather small and well adapted to perform high level quantum chemical calculations.  “test” molecule to validate ab initio [Senent et al, 2005] and Density Functional Theory calculations by comparing them with experimental results (no precise equilibrium structure and barrier height calculated yet) : study in progress

NEW MEASUREMENTS FROM LILLE GHz, accuracy 50 kHz 434 lines J up 62, K up to 22 (TYAM goes up to J = 40, K = 17) CHALLENGES -a relatively small rotational A constant (almost 0.6 cm -1 )  observation of very high J values (up to 70) -2 non-zero components of the dipole moment  both a-type and b-type transitions observed (  a = 1.63 Debye and  b = 0.68 Debye) -3 low frequencies modes: ( t = 130 cm -1, COC bending mode 12 = 318 cm -1, out-of-plane bending mode 17 = 332 cm -1 )  observation of rotational transitions within those levels populated at room temperature.  perturbations?

-A fairly asymmetric top (  = ) combined with an internal rotation methyl top V 3 ≈ 371 cm -1, F ≈ 5.49 cm -1 - clustering of the transitions with the same K c quantum number for high J, low K a values. -a rather large number of torsionally dependent contributions to this term of the form P  2 (P b 2 -P c 2 ), cos3  (P b 2 -P c 2 ) …. -a small  =0.084 parameter : F(P  –  P a ) 2 : same labeling scheme as for acetic acid the +K a E-species levels belonging to even values of v t lie below the ‑ K a levels, and the +K a E species levels belonging to odd values of v t lie above the ‑ K a levels for all values of |K a | from 1 to 18.

RHO AXIS METHOD Kirtman (1962), Lees and Baker (1968), Herbst et al (1984) Takes its name from the choice of axis system: related to the PAM by a rotation of an angle  RAM to eliminate the -2Fp   x J x and -2Fp   y J y terms. The new « z RAM » axis is along the  vector (  x =  y = 0) Advantages: H tor = F(P  2 –  J z ) + V(  ) is diagonal in K, can be diagonalized first Then H rot and H int can be diagonalized H int= P  2 P 2, P  2 P a 2, cos(3  )P 2, cos(3  )P a 2 (P b 2 -P c 2 )Cos(3  ), (P b 2 -P c 2 )P  2 (P a P b +P b P a ) sin3 

0.116 MHz MHz 69 Present Ogata et al 3862

EXEMPLES OF BAD « CD-LOOPS »

Rotational constants in the RHO axis system (RAM) and in the principal axis system (PAM). Angles between the principal axis and the methyl top axis. RAMPAMPAM a A(MHz) B(MHz) C(MHz) D ab (MHz) <(i,a) <(i,b) <(i,c)  RAM a a Calculation of the principal axis rotational constants from the molecular structure (MP2/VTZ) and of the angles in degrees between the principal axis (a,b,c) and the methyl top axis (i).

Intensity calculations: Dipole moment components in Debye in the principal axis system (PAM) and in the RHO axis system (RAM). RAMPAM a aa bb A Experimental value from A. Bauder, J. Phys. Chem. Ref. Data 8, (1979).

Conclusions: Our global RAM fit represents some improvement over past studies but -a number of previously published lines show bad observed-calculated values. inadequate combination differences ( i.e. violate a “CD loop criterion”). Of all the “loops” checked, 12% of them (corresponding to 1747 energy levels) show indeed combination differences exceeding about 0.4 MHz. New experimental recordings are needed before trying to fit/predict at higher J !!! -no direct measurement of the torsional frequency  a strong correlation between F and V 3

nlmOperatorParamer Present Work 220 (1-cos 3  )/2 V3V (113) 404- P  DJDJ (455) PP F (129) - P  P a 2 D JK (527) 211P PaP Pa  (723) -P a 4 DKDK (594) 202Pa2Pa2 A RAM (188) -2 P  (P b  - P c  ) JJ (227) Pb2Pb2 B RAM (179) -{P a 2,(P b  - P c  )}  (900) Pc2Pc2 C RAM (416) (P a 3 P b + P b P a 3 )D ab (108) (P a P b + P b P a )D ab (162) 642 (1-cos 6  ) P  NvNv (127) 440PP k4k (184) (1-cos 6  )(P b  - P c   c (202) (1-cos 6  )/2 V6V (636) 2 P   (P b  - P c   c3c (750) 431PgPaPgPa k3k (711) 624 (1-cos 3  ) P  fvfv (441) 422PgPPgP GvGv (432) (1-cos 3  ) (P b  - P c  ) P  c 2J (445)

2P   (P b  - P c  )c1c (264) (1-cos 3  ){P a 2, (P b  - P c  )} c 2K (404) sin3  (P a P c + P c P a ) D ac (540) 2P    P    P    P  c 1J (211) (1-cos 3  ) P  FvFv (184) (1-cos 3  ) (P a P b + P b P a ) P  d abJ (883) (1-cos 3  ) P a 2 k5k (386) (1-cos 3  ) (P a 3 P b + P b P a 3 ) d abK (625) (1-cos 3  )(P b  - P c  ) c2c (253) (1-cos 3  ) P a 2 P  k 5J (125) (1-cos 3  )(P a P b + P b P a ) d ab (176) 633PP PaPP Pa k 3J (198) PgPa2PgPa2 k2k (166) PPa3PPa3 k 3K (461) P g   (P a P b + P b P a )  ab (434) P   {P a, (P b  - P c  )}c (110) 413P  P a P  LvLv (110) P   {P a , P b }  ab (808) P g P a 3 k1k (279) 606PP HJHJ (35) P  {P a,(P b  - P c  )}c4c (561) P Pa2P Pa2 H JK (570)

P  {P a  , P b } bb (145) P  P a 4 H KJ (187) Pa6Pa6 HKHK (281) 826 (1-cos 3  ) (P b  - P c  ) P  c 2JJ (201) P   (P b  - P c   P  c 3J (514) N d 4270 (J max = 62) s es e 1.43 (49 Parameters)

Ab Initio Study of the Rotational-Torsional Spectrum of Methyl Formate M. L. Senent, M. Villa, F. J. Meléndez, and R. Domínguez-Gómez The Astrophysical Journal, volume 627, part 1 (2005), pages 567–576

Methyl formate and laboratory measurement. Large amount found in Orion molecular cloud and recent researches have revealed that this molecule exists in the early stage of star-formation. The tsunekawa group reports the first observation of methyl formate in torsionally excited state (20 lines assigned around 97 GHz with Nobeyama 45 m radio telescope). Torsional motion requires higher energy and it indicates that the observed region is warmer. FROM: