Bill Madden
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) Square of the transition moment n e m 2 2.Frequency of the light 3.Population difference (N m - N n ) 4.Resonance factor - Dirac delta function (0) = 1
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) 1 Fermi’s Golden Rule
n m n* mdn* md ~ d /dq Quantum Mechanics Wave Mechanics Schrödinger Notation Quantum Mechanics Matrix Mechanics Dirac Notation Classical Analogue Dipole moment change over motion …coordinate q Take Home Message
n m n* mdn* md ~ d /dq Quantum Mechanics Wave Mechanics Schrödinger Notation Quantum Mechanics Matrix Mechanics Dirac Notation Classical Analogue Dipole moment change over motion …coordinate q Take Home Message ~
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) Square of the transition moment n e m 2 2.Frequency of the light 3.Population difference (N m - N n ) 4.Resonance factor - Dirac delta function (0) = 1
ABC Rotation of a Diatomic Molecule
For pure rotational transitions a molecule must have a permanent dipole moment
Observing the dipole change from the side i.e. the direction of propagation
dμ/dθ ≠ 0
Selection Rules Harry Kroto 2004 ∆N = ?
(N m - N n ) N m -N m
N m = N o e -∆E/kT In the case of degenerate levels such as rotational levels eacj J level is 2J+1 degenerate we get N m = N o e-∆E/kT J 2J+1 e -∆E/kT N m /N o F(J)
J 2B 4B 6B 8B 10B 12B 14B 16B0 Boltzmann
pedia.org/wi ki/Boltzmann _constant Boltzmann
N m = N o e -∆E/kT In the case of degenerate levels such as rotational levels eacj J level is 2J+1 degenerate we get N m = N o e-∆E/kT J 2J+1 e -∆E/kT N m /N o F(J)
J 2B 4B 6B 8B 10B 12B 14B 16B0 Boltzmann
Boltzmann Population with Degeneracy
N m = N o e -∆E/kT In the case of degenerate levels such as rotational levels each J level is 2J+1 degenerate we get N m = N o (2J+1)e -∆E/kT J 2J+1 e -∆E/kT N m /N o F(J)
J 2B 4B 6B 8B 10B 12B 14B 16B0 Boltzmann
C≡O
CO Rotational Spectrum PROBLEM
Separation Vibration Rotation
ABC H Atom
H Atom Spectrum A
Positronium - +
Einstein Coefficients nn mm
Harry Kroto 2004 H 21 cm Line