SHE Research at RIKEN/GARIS

Slides:



Advertisements
Similar presentations
Deep inelastic reactions 238 U 248 Cm primary fragments superheavy isotope 208 Pb 278 Sg fission V. Zagrebaev and W. Greiner, 2007.
Advertisements

SYNTHESIS OF SUPER HEAVY ELEMENTS
Viola and the Heavy Elements W. Loveland Oregon State University.
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
1Managed by UT-Battelle for the U.S. Department of Energy Low-Energy Review, 30 August 2011 Search for 283,284,285 Fl decay chains Krzysztof P. Rykaczewski.
J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
At the End of the Nuclear Map Yuri Oganessian Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow region,
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 106 nd Session, 24 September 2009, Dubna.
Status of the experiments on the synthesis of Element 117
Spectroscopy of exotic nuclei Lecture 4
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Heavy Element Research at Dubna (current status and future trends) Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
N=126 factory Guy Savard Scientific Director of ATLAS Argonne National Laboratory & University of Chicago ATLAS Users Meeting ANL, May 15-16, 2014.
Proton resonance scattering of 7 Be H. Yamaguchi, Y. Wakabayashi, G. Amadio, S. Kubono, H. Fujikawa, A. Saito, J.J. He, T. Teranishi, Y.K. Kwon, Y. Togano,
New Result in Production and Decay of an Isotope, , of the 113 th Element Kosuke Morita Superheavy Element Laboratory RIKEN Nishina Center for Accelerator-Based.
Chemistry of Spherical Superheavy Elements – The Road to Success.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Periodic Table Of Elements
Synthesis of superheavy elements at FLNR S. DMITRIEV Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, , Russia.
2007/6/5 International Nuclear Physics Conference Experiments on Searching for the Heaviest Elements Kosuke Morita Superheavy Element Laboratory.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Beyond Darmstadt(ium) - Status and Perspectives of Superheavy Element Research recent results from SHIP (GSI) synthesis and identification of SHE nuclear.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
The excitation and decay of nuclear isomers Phil Walker CERN and University of Surrey, UK 3. Isomers at the limits of stability ● p decay ● n decay ● α.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 104 th Session, 25 September 2008, Dubna.
Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans H. Okuno, et. al. (RIKEN Nishina Center) and P. Ostroumov (ANL) Upgrade Injector Low.
Synthesis of the heaviest elements at RIKEN Kosuke Morita Superheavy Element Laboratory RIKEN Nishina Center 2009/1/201Periodic Table of D.I. Mendeleev.
Preparation of gas-chemistry of Dubnium at IMP Z. Qin, J.S. Guo, X.L. Wu, H.J.Ding, W.X.Huang, Z.G. Gan, Institute of Modern Physics, Chinese Academy of.
In-beam  -ray spectroscopy of neutron-rich nuclei in the uranium region through the heavy-ion transfer reaction ISHII Tetsuro Japan Atomic Energy Agency.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
Structure of Super-Heavy Elements Andreas Heinz A. W. Wright Nuclear Structure Laboratory Yale University ATLAS Workshop, August 8-9, 2009.
Drift Time Spectrometer for Heaviest Elements Ludwig-Maximilians-Universität MünchenMarch 2006Mustapha Laatiaoui.
Search for QFS anomaly in pd - breakup reaction below E p = 19 MeV Shuntaro Kimura, K. Sagara, S. Kuroita, T. Yabe, M. Okamoto, K. Ishibashi, T. Tamura,
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
Workshop on The Future of Superheavy Element Research February , 2004 Gesellschaft f ü r Schwerionenforschung Darmstadt, Germany.
C. M. Folden III Cyclotron Institute, Texas A&M University NN2012, San Antonio, Texas May 31, 2012.
Observation of new neutron-deficient multinucleon transfer reactions
Heavy ion nuclear physics in JINR /present and future/ Yuri Oganessian FLNR JINR 28-th of Nucl. Phys. PAC meeting June 19-20, 2008, JINR, Dubna.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 102 nd Session, September 2007, Dubna.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Possibility of Synthesizing Doubly Magic Superheavy Nucleus Y. Aritomo Department of Electric and Electronic Engineering, Faculty of Science and Engineering,
Feng-Shou Zhang College of Nuclear Science and Technology Beijing Normal University, Beijing, China Collaborators: Long Zhu, Bao-An Bian, Hong-Yu Zhou,
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
Study of Heavy-ion Induced Fission for Heavy Element Synthesis
HEAVY ELEMENT RESEARCH AT THE FLNR (DUBNA)
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
A novel trap for electron scattering off short-lived exotic nuclei
Study of SHE at the GSI – SHIP
Emission of Energy by Atoms and Electron Configurations
Periodic Table of the Elements
采用热熔合方法合成超重核的理论研究 王楠 深圳大学 合作者: 赵恩广 (中科院 理论物理所) 周善贵 (中科院 理论物理所)
PERIODIC TABLE OF ELEMENTS
Sensitivity of reaction dynamics by analysis of kinetic energy spectra of emitted light particles and formation of evaporation residue nuclei.
(Lawrence Berkeley National Laboratory)
Electron Configurations
New Transuranium Isotopes in Multinucleon Transfer Reactions
Presentation transcript:

SHE Research at RIKEN/GARIS RCNP RIKEN Kyushu Univ. Kosuke Morita Research Group for Superheavy Element, RIKEN Nishina Center Department of Physics, Kyushu University, 2015/11/09 JCNP2015@OSAKA

2015/11/09 JCNP2015@OSAKA

one end of nuclear chart ’84-’94 120 119 118 117 116 115 114 SHE 113 112 Rg Ds Mt 262 266 265 264 261 260 259 258 257 263 Hs Bh Sg Db Rf 162 184 A a-decay A Spontaneous fission A b+ or EC decay 2015/11/09 JCNP2015@OSAKA

one end of nuclear chart 2010 120 119 118 267 268 271 272 275 276 279 280 278 281 284 285 286 282 283 287 288 289 290 291 292 293 294 117 278 274 270 294 293 290 289 286 285 282 281 116 115 114 SHE 113 263 265 266 267 259 264 269 270 271 262 272 268 277 278 273 274 261 112 Rg Ds Mt 262 266 265 264 261 260 259 258 257 263 Hs 263 Bh Sg Db Rf 162 184 A a-decay A Spontaneous fission A b+ or EC decay 2015/11/09 JCNP2015@OSAKA

Main Limitations of Various Approaches to SHE Reaction Mode Proj. (Aproj) Limitation Heaviest Nuclide comment (Z) (N) multiple n-capture n SF* of Fm isotopes 100 157 maybe possible in nature (r-process) hot fusion (HI,xn);x=3-6 Ucn≥40 MeV ≤34 &48 small survival prob. (Gn/Gf very small) 118 177 N-rich beam often improves. (cf. 48Ca;warm fusion) cold fusion (HI,xn);x=1,2 Ucn ≤20 MeV 50-70 small fusion prob. (dynamical hindrance of fusion?) 113 165 transfer reaction ≤22 lack of target heavier than 254Es** 103 159 *SF: spontaneous fission. cf. T1/2 of 258Fm158 ≈ 400 ms. **254Es(Z=99): T1/2 ≈ 276 day 2015/11/09 JCNP2015@OSAKA

Linear Accelerator Facility CSM Acc. Tanks RILAC Acc. Tanks Beam Energy Monitor RFQ-Linac GARIS Three years ago, Linear accelerator was upgraded and maximum energy was Increased up to 6 A MEV. Because this maximum energy is enough for production of super heavy element, The GARIS was re-installed here from Ring Cyclotoron facility. This is our apparatus GARIS. Energy of the beam from the acc. were monitored by two method. One is a B rho of this 90 bending magnet and the other is TOF of this section. The accuracy of the energy of the beam was pulse minus 0.2 %. 18GHz ECR Ion Source 2015/11/09 JCNP2015@OSAKA

RIKEN Gas-filled Recoil Separator GARIS Bending angle 45 degree Pole gap 150 mm Radius of central ray 1200 mm Maximum field 1.54 T Q1, Q2 Pole length 500 mm Bore radius Maximum field gradient 5.2 T/m D2 10 degree 160 mm 400 mm Maximum Field 1.04 T beam Differential pumping section Rotating Target r 150 mm w 2000 rpm D1 Q1 Q2 D2 Magnification X -0.76 Y -1.99 Dispersion 0.97 cm/% Total length 5760 mm Acceptance Dq ±68 mrad Df ±57 mrad DW 12.2 msr 2015/11/09 JCNP2015@OSAKA

GSI/SHIP LBNL/BGS IMP/GFRS 208Pb + 64Ni  272Ds* 271Ds 267Hs 263Sg 11 10 9 8 7 a1 a2 a3 a4 a5 Ea (MeV) 5 Counts/100keV Tdecay Counts/bin 1000s 10s 0.1s 1ms 10ms a b t=2.9ms t=120ms t=77ms t=1.0s t=3.7s t=220s GSI/SHIP LBNL/BGS IMP/GFRS 271Ds 267Hs 263Sg 259Rf 255No 2015/11/09 JCNP2015@OSAKA

2015/11/09 JCNP2015@OSAKA

2015/11/09 JCNP2015@OSAKA

Summary of 208Pb + 64Ni → 271110 + n reaction NN2003 at Moscow 18Jun2003 Summary of 208Pb + 64Ni → 271110 + n reaction Nuclei n T1/2 271110 11 1.63 +0.44 -0.29 ms improved 271m110 3 69 +56 -21 confirmed 267Hs 12 52 +13 - 8 267mHs 1 0.80 +3.8 -0.38 s possible Eopt(64Ni) = 314 MeV Eopt(cm) 240 K. Morita et al., EPJA 21, 257-263 (2004) 2015/11/09 JCNP2015@OSAKA

254Md ← 256Lr ← 260Db ← 264Bh ← 268Mt ← 272Rg Counts / bin 5 Counts / bin Counts / 100 keV E α / MeV 8 9 10 11 12 a1 a2 a3 a4 a5 10000s 100s 1s 10ms 100ms Tdecay t=5.5ms t=30ms t=1.3s t=8.2s t=26s 2015/11/09 JCNP2015@OSAKA

2015/11/09 JCNP2015@OSAKA

Summary of 209Bi + 64Ni → 272111 + n reaction NN2003 at Moscow 18Jun2003 Summary of 209Bi + 64Ni → 272111 + n reaction RIKEN GSI Nuclei n T1/2 Ea Efiss. MeV 272111 14 3.8 +1.4 - 0.8 ms 10.2~11.56 6 1.6 +1.1 -0.5 10.8~11.05 268Mt 21 +8 - 5 9.4~10.77 42 +29 -12 10.1~10.3 264Bh 0.89 +0.31 - 0.19 s 8.86~9.83 208 206 1.0 +0.7 -0.3 9.1~9.6 260Db 12 5.7 +2.3 - 1.3 8.35~9.4 231 2.6 +1.8 -0.8 9.1~9.2 256Lr 8 18 +10 8.35~8.65 4 33 +27 -10 8.4~8.5 Eopt(64Ni) = 319 MeV Eopt(cm) 244 K. Morita et al., JPSJ 73, 1738-1744 (2004) 2015/11/09 JCNP2015@OSAKA

Cn GSI RIKEN FLNR ref. 1 2 3 4 present 5 6 277Cn 11.45 11.17 11.09±.07 11.32±.04 11.07±.07 0.28 ms 1.41 ms 1.10 ms 1.22 ms 0.37 ms 273Ds 11.08 11.20 11.14±.04 11.15±.07 11.03±.07 11.35 0.11 ms 0.31 ms 0.52 ms 0.04 ms 0.373 ms 0.39 ms 269Hs 9.23 9.18 9.17c 9.25±.07 9.14±.04 19.7 s 22.0 s 14.2 s 0.27 s 36.01 s 265Sg 4.60 0.20 8.71±.04 8.70±.04 8.66±.07 8.63 7.40 s 18.8 s 23.0 s 79.9 s 13.84 s 158 s 261Rf 8.52 153 197 156 176 8.30±0.06 4.70 s 14.5 s 2.97 s 8.30 s 3.73 s 54+8-4 s 257No 8.34 8.22 8.24, 8.34 15.0 s 384 s 17 s Cn ref. 1 Hofmann S. et al., Z. Phys. A354, 229 (1996) 208Pb + 70Zn → 277Cn + n 2 Hofmann S. and Münzenberg G., Rev. Mod. Phys. 72, 733 (2000) 3,4 J. Phys. Soc. Jpn., Vol. 76, No. 4, p.043201(2007) present 5 Lazarev Yu. A. et al., Phys. Rev. C54, 620 (1996) 244Pu + 34S → 273Ds + 5n 6 Lazarev Yu. A. et al., Phys. Rev. C62, 064307(2000) 244Pu + 22Ne → 261Rf + 5n 2015/11/09 JCNP2015@OSAKA

N=165 277Cn t = 0.86+0.69-0.26 ms N=163 273Ds t = 0.27+0.22-0.08 ms RIKEN N=161 GSI 269Hs t = 18+15-6 s RIKEN present N=159 265Sg t = 29+23-9 s N=157 261Rf t =6.8+5.5-2.1 s 10ms 1ms 0.1s 10s 1000s 2015/11/09 JCNP2015@OSAKA T_decay/s

2015/11/09 JCNP2015@OSAKA

209Bi + 70Zn → 278113 + n CN CN a a The first observation 36.75 MeV 30.33 mm 36.47 MeV 30.08 mm 278113 CN 278113 CN a a The first observation 11.68 MeV 344 μs 30.49 mm 11.52 MeV 4.93 ms 30.16 mm 23 July 2004, 18:55 274111 274111 a a 11.15 MeV 9.260 ms 30.40 mm 11.31 MeV 34.3 ms 29.61 mm 270Mt 270Mt a a 10.03 MeV 7.163 ms 29.79 mm 2.32 MeV (escape) 1.63 s 29.45 mm 266Bh 266Bh a a 9.08 MeV 2.469 s 30.91 mm 9.77 MeV 1.31 s 29.65 mm The second observation 2 April 2005, 2:18 262Db 262Db 204.05 MeV 40.9 s 30.25 mm 192.32 MeV 0.787 s 30.47 mm s.f. s.f. 2015/11/09 JCNP2015@OSAKA

2015/11/09 JCNP2015@OSAKA

• 6 (7) consecutive α decays • reached to known 266Bh,262Db,258Lr The third observation 12 Aug. 2012 278113 CN α1 • 6 (7) consecutive α decays • reached to known 266Bh,262Db,258Lr ⇒ well confirm the 2004, 2005 events 11.82 MeV 667 μs 274Rg α2 10.65 MeV 9.97 ms 270Mt α3 10.26 MeV 444 ms Known nuclides 266Bh 266Bh 0.6 s α4 α 9.29 9.39 MeV 5.26 s 8.67 8.53 8.45 262Db 262Db 34 s α (34%) α5 8.63 MeV 126 s α 8.654 8.621 8.595 8.565 258Lr 258Lr 3.9 s SF (64%) α6 8.66 MeV 3.78 s 254Md 254Md Wilk et al., PRL 85, 2697 (2000). Table of Isotopes, 8th ed. (1996). 2015/11/09 JCNP2015@OSAKA

観測された崩壊のまとめ 2nd event Apr. 2 2005 1st event Jul. 23 2004 209Bi + 70Zn  n 2nd event Apr. 2 2005 1st event Jul. 23 2004 3rd event Aug. 12 2012 113 112 277Cn 111 272Rg 110 269Ds 270Ds 271Ds 273Ds 109 266Mt 268Mt 108 263Hs 265Hs 266Hs 267Hs 269Hs 270Hs 271Hs 107 261Bh 262Bh 264Bh 266Bh 267Bh 106 258Sg 259Sg 261Sg 263Sg 105 259Db 260Db 104 256Rf 260Rf 261Rf 262Rf 103 255Lr 257Lr 258Lr 259Lr 260Lr 261Lr 262Lr 102 256No 258No 260No 262No 101 253Md 254Md 259Md 260Md 100 252Fm 254Fm 255Fm 257Fm 258Fm 259Fm 99 251Es 253Es 256Es 257Es 98 250Cf 251Cf 252Cf 253Cf 254Cf 255Cf 256Cf 278113 278113 a a 既知核種 274Rg 274Rg a a 270Mt 270Mt a a 262Db 264Hs 265Sg 266Sg 262Sg 260Sg 263Db 263Rf 261Db 257Db 258Db 257Rf 258Rf 259Rf 255Md 256Md 257Md 258Md 259No 256Fm 253Fm 255No 256Lr 257No 254No 252Es 255Es 254ES 266Bh 266Bh a a 262Db 262Db a SF 258Lr a 254Md 254Fm a 250Cf 2015/11/09 JCNP2015@OSAKA

Elm. 113 RIKEN K. Morita, K. Morimoto, D. Kaji, H. Haba, K. Okeki, Y. Kudo, Y. Wakabayashi, A. Yoneda, A. Yoshida, T. Onishi, Y. Kasamatsu, H. Hasebe, M. Huang, T. Ichikawa, R. Kanungo, K. Katori Tokyo U. of Physics T. Sumita, K. Tanaka Saitama U. T. Yamaguci, T. Akiyama, R. Sakai, S. Yamaki Niigata U. H. Kudo, S. Goto, M. Murakami, H. murayama, Y. Kariya IMP Lanzhou H.-S. Xu ,T. Huang U. Tokyo E. Ideguchi Tohoku U. T. Suda, H. Kikunaga JAEA N. Sato, H. Koura, S. Mitsuoka Yamagata U. F. Tokanai, T. Moriya, K. Mayama, M. Takeyama, S. Namai, A. Mashiko U. Tsukuba A. Ozawa, K. Sueki 高能物理研究所 Y.-L. Zhao Journal of the Physical Society of Japan, 73 (2004) 1593 – 1596. Journal of the Physical Society of Japan, 76 (2007) 045001. Journal of the Physical Society of Japan, 81 (2012) 103201. 2015/11/09 JCNP2015@OSAKA

248Cm + 48Ca  296Lv* Experiment at RIKEN GARIS Dec. 1 - 12, 2013, Sep. 19 – Oct. 16, 2014 RIKEN D. Kaji, K. Morimoto, H. Haba, Y. Wakabayashi, M. Huang, J. Kanaya, A. Yoneda, A. Yoshida, K. Katori Tokyo U. Sci. K. Tanaka Yamagata U. M. Takeyema, F. Tokanai, T. Yoshida Saitama U. S. Yamaki, T. Yamaguchi Niigata U. M. Murakami IMP Lanzhou Z. Gan, L. Ma GSI H. Geissel, S. Hofmann, Y. Maurer, S. Heinz Kyushu U. K. Morita, K. Fujita, Y. Narikiyo, T. Tanaka, S. Yamamoto 2015/11/09 JCNP2015@OSAKA

preliminary RIKEN/GARIS 10 0.90 0.265 262.0 251.0 - 250.0 - 249.0 800 Date Time /days D(Ti) /mgcm-2 D(Cm) E(RILAC) MeV Elab /MeV (b – c – e) Ip /pmA Dose /1018 Ex_296Lv /MeV 2/12 – 12/12 2013 10 0.90 0.265 262.0 251.0 - 250.0 - 249.0 800 4.3 41.5±1.0 19/9 – 16/10 2014 14.2 0.290 258.0 247.0 - 246.0 - 245.0 680 5.0 37.5±1.1 Sep. Oct. 2015 0.9 0.220 266.7 254.3 44 Ex_296Lv /MeV Correlated events (decay chains) 41.5±1.0 3 (4n), 1 (3n), 1(3n?) tentative 37.5±1.1 1 (3n), 1 (3n?) tentative 44 preliminary 2015/11/09 JCNP2015@OSAKA

An isotope of the 113th element, 278113, was produced in the Summary An isotope of the 113th element, 278113, was produced in the 209Bi + 70Zn  278113 + n reaction, and unambiguously identified via genetic correlation, connected to the well known nuclides. 293Lv and 292Lv were produced in the 248Cm + 48Ca  296Lv* reaction What’s Next (New Element Search) ? 294118 295118 293117 294117 290Lv 291Lv 292Lv 293Lv 294Lv N = 174 175 176 177 178 2015/11/09 JCNP2015@OSAKA

Systematic study of the actinide based 50Ti -induced reactions. 248Cm + 50Ti  298118180* cf. 249Cf + 48Ca  297118179* Future ? 248Cm + 54Cr  302120182* Study of new reaction mechanism (non-complete fusion) to produce SHE such as multi-nucleon transfer, or deep inelastic reaction of 248Cm + 238U? Breakthrough is needed! Spectroscopic studies of the isotopes of the heaviest element. Chemistry of superheavy Element. Mass measurement of SHE with MR-TOF (Wada-san’s group). 2015/11/09 JCNP2015@OSAKA

GARIS-II Experimental plans : New SHE search, mass measurement, SHE chemistry, SHE spectroscopy May 29 D. Kaji-san ERs New SHE search Reactive gas or He+KCl aerosol Recoil transfer chamber SHE chemistry SHE spectroscopy Mass measurement TOF detector Si-Ge detector BOX Projectile Beam envelope Differential pumping Target Beam dump Gas inlet Focal plane 1 [m] D2 D1 Q2 Q3 Q1 MRTOF MANON May 29 M. Wada-san 2015/11/09 JCNP2015@OSAKA

Thank you very much for your kind attention. 2015/11/09 JCNP2015@OSAKA

High performance of GARIS-II High Transmission under Low BG level E [MeV] Counts 5 6 7 8 9 10 20 40 15 1 2 3 4 GARIS-II (dose=2.4x1014) 245Fm 211mPo 211Po 211At 210At 210Po 211Bi 245Es 241Cf GARIS (dose=6.4x1014) Trans = 63% Succeeded in the observation of Fm isotope produced by 208Pb(40Ar,3n)245Fm. Observed a-peak due to 245Fm in singles!  BG level was about 5 times lower than GARIS.  Trans was 1.5 times higher than GARIS. 248Cm+HI Pb/Bi+HI GARIS GARIS-II 1 2 3 4 5 100 101 102 v/v0 Transmission [%] 23Na 26Mg 27Al 48Ca 2015/11/09 JCNP2015@OSAKA

2015/11/09 JCNP2015@OSAKA

Aritomo & Hagino 2015/11/09 JCNP2015@OSAKA