CMOS VLSI Design CMOS Transistor Theory

Slides:



Advertisements
Similar presentations
DC Response DC Response: Vout vs. Vin for a gate Ex: Inverter
Advertisements

VLSI Design Lecture 3a: Nonideal Transistors. Outline Transistor I-V Review Nonideal Transistor Behavior Velocity Saturation Channel Length Modulation.
Lecture 3: CMOS Transistor Theory. CMOS VLSI DesignCMOS VLSI Design 4th Ed. 3: CMOS Transistor Theory2 Outline  Introduction  MOS Capacitor  nMOS I-V.
Chapter 6 The Field Effect Transistor
EE466: VLSI Design Lecture 02 Non Ideal Effects in MOSFETs.
Introduction to CMOS VLSI Design Lecture 15: Nonideal Transistors David Harris Harvey Mudd College Spring 2004.
Introduction to CMOS VLSI Design Lecture 19: Nonideal Transistors
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
CMOS Transistor and Circuits
Introduction to CMOS VLSI Design Lecture 5 CMOS Transistor Theory
Introduction to CMOS VLSI Design MOS Behavior in DSM.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley –
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
Lecture 11: MOS Transistor
Introduction to VLSI Circuits and Systems, NCUT 2007 Chapter 6 Electrical Characteristic of MOSFETs Introduction to VLSI Circuits and Systems 積體電路概論 賴秉樑.
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
VLSI Design Lecture 3a: Nonideal Transistors
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Design and Implementation of VLSI Systems (EN1600) lecture07 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture #16 OUTLINE Diode analysis and applications continued
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
The metal-oxide field-effect transistor (MOSFET)
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
Digital Integrated Circuits A Design Perspective
DC and transient responses Lezione 3
EE4800 CMOS Digital IC Design & Analysis
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Introduction to CMOS VLSI Design Nonideal Transistors.
Lecture 2: CMOS Transistor Theory
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
Transistor Characteristics EMT 251. Outline Introduction MOS Capacitor nMOS I-V Characteristics (ideal) pMOS I-V Characteristics (ideal)
Metal-Oxide-Semiconductor Field Effect Transistors
Lecture 3: CMOS Transistor Theory
ECE 342 Electronic Circuits 2. MOS Transistors
EE213 VLSI Design S Daniels Channel Current = Rate of Flow of Charge I ds = Q/τ sd Derive transit time τ sd τ sd = channel length (L) / carrier velocity.
NOTICES Project proposal due now Format is on schedule page
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
The Devices Digital Integrated Circuit Design Andrea Bonfanti DEIB
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 28, 2011 MOS Transistor.
1 Slides adapted from: N. Weste, D. Harris, CMOS VLSI Design, © Addison-Wesley, 3/e, 2004 MOS Transistor Theory.
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
Junction Capacitances The n + regions forms a number of planar pn-junctions with the surrounding p-type substrate numbered 1-5 on the diagram. Planar junctions.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
Structure and Operation of MOS Transistor
VLSI System Design Lect. 2.2 CMOS Transistor Theory2 Engr. Anees ul Husnain ( Department of Electronics.
Introduction to MOS Transistors Section Outline Similarity Between BJT & MOS Introductory Device Physics Small Signal Model.
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 19, 2014 MOS Transistor.
The MOS Transistor Polysilicon Aluminum. The NMOS Transistor Cross Section n areas have been doped with donor ions (arsenic) of concentration N D - electrons.
CP 208 Digital Electronics Class Lecture 6 March 4, 2009.
Introduction to CMOS VLSI Design CMOS Transistor Theory
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 20, 2013 MOS Transistor.
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
3: CMOS Transistor Theory
VLSI System Design Lect. 2.1 CMOS Transistor Theory
VLSI Design CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory
CP-406 VLSI System Design CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory
Presentation transcript:

CMOS VLSI Design CMOS Transistor Theory

Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V Characteristics Gate and Diffusion Capacitance Pass Transistors RC Delay Models

Introduction So far, we have treated transistors as ideal switches An ON transistor passes a finite amount of current Depends on terminal voltages Derive current-voltage (I-V) relationships Transistor gate, source, drain all have capacitance I = C (DV/Dt) -> Dt = (C/I) DV Capacitance and current determine speed Also explore what a “degraded level” really means

MOS Capacitor Gate and body form MOS capacitor Operating modes Accumulation Depletion Inversion Accumulation Depletion Inversion

Terminal Voltages Mode of operation depends on Vg, Vd, Vs Vgs = Vg – Vs Vgd = Vg – Vd Vds = Vd – Vs = Vgs - Vgd Source and drain are symmetric diffusion terminals By convention, source is terminal at lower voltage Hence Vds  0 nMOS body is grounded. First assume source is 0 too. Three regions of operation Cutoff Linear Saturation

nMOS Cutoff No channel Ids = 0 No channel formed until Vgs > Vt

nMOS Linear Channel forms Current flows from d to s e- from s to d Ids increases with Vds Similar to linear resistor Vds = Vd – Vs = Vgs - Vgd The larger the Vds, the smaller the Vgd

nMOS Saturation Channel pinches off, when Vgd < Vt, no surface inversion near the drain. Ids independent of Vds We say current saturates Similar to current source Vds = Vd – Vs = Vgs – Vgd Saturation occurs when Vds > Vgs – Vt Vsat = Vgs – Vt Vds > Vsat

I-V Characteristics In Linear region, Ids depends on How much charge is in the channel? How fast is the charge moving?

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Qchannel =

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Qchannel = CV C =

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Qchannel = CV C = Cg = eoxWL/tox = CoxWL V = Cox = eox / tox capacitance per unit area

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Qchannel = CV C = Cg = eoxWL/tox = CoxWL V = Vgc – Vt = (Vgs – Vds/2) – Vt Vc = ½(Vs+ Vd) = Vs- ½(Vs) + ½(Vd) Vgc= Vg-Vc = Vg- Vs – ½(Vds) Cox = eox / tox Vt used to create inversion layer

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field between source and drain v =

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field between source and drain v = mE m called mobility E =

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field between source and drain v = mE m called mobility E = Vds/L Time for carrier to cross channel: t =

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field between source and drain v = mE m called mobility E = Vds/L Time for carrier to cross channel: t = L / v

nMOS Linear I-V Now we know How much charge Qchannel is in the channel How much time t each carrier takes to cross

nMOS Linear I-V Now we know How much charge Qchannel is in the channel How much time t each carrier takes to cross

nMOS Linear I-V Now we know How much charge Qchannel is in the channel How much time t each carrier takes to cross Q = CV, t = L/v

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain When Vds > Vdsat = Vgs – Vt Now drain voltage no longer increases current

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain When Vds > Vdsat = Vgs – Vt Now increasing drain voltage no longer increases current

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain When Vds > Vdsat = Vgs – Vt Now increasing drain voltage no longer increases current

nMOS I-V Summary Shockley 1st order transistor models

Example Assuming using a 0.6 mm process From AMI Semiconductor tox = 100 Å m = 350 cm2/V*s Vt = 0.7 V Plot Ids vs. Vds Vgs = 0, 1, 2, 3, 4, 5 Use W/L = 4/2 l

pMOS I-V All dopings and voltages are inverted for pMOS Mobility mp is determined by holes Typically 2-3x lower than that of electrons mn 120 cm2/V*s in AMI 0.6 mm process Thus pMOS must be wider to provide same current In this class, assume mn / mp = 2

Capacitance Any two conductors separated by an insulator have capacitance Gate to channel capacitor is very important Creates channel charge necessary for operation Source and drain have capacitance to body Across reverse-biased diodes Called diffusion capacitance because it is associated with source/drain diffusion

Gate Capacitance Approximate channel as connected to source Cgs = eoxWL/tox = CoxWL = CpermicronW; where Cpermicron = CoxL = ox/tox L Cpermicron is typically about 2 fF/mm

Diffusion Capacitance Csb, Cdb due to reverse biased p-n junction between source and body; between drain and body. Undesirable, called parasitic capacitance Capacitance depends on area and perimeter Make diff area small Comparable to Cg for contacted diff ½ Cg for uncontacted Varies with process Continue Section 2.3, 2.4, on white board contacted diff uncontacted diff