2005 ROMS/TOMS Workshop Scripps Institution of Oceanography La Jolla, CA, October 25, 2005 4D Variational Data Assimilation Drivers Hernan G. Arango IMCS,

Slides:



Advertisements
Similar presentations
Introduction to Data Assimilation NCEO Data-assimilation training days 5-7 July 2010 Peter Jan van Leeuwen Data Assimilation Research Center (DARC) University.
Advertisements

Using PALM to integrate variational data assimilation algorithms with OPA ECMWF, 29 june 2005, Reading. Nicolas Daget CERFACS, Toulouse.
Assimilation Algorithms: Tangent Linear and Adjoint models Yannick Trémolet ECMWF Data Assimilation Training Course March 2006.
The Inverse Regional Ocean Modeling System:
Setup of 4D VAR inverse modelling system for atmospheric CH 4 using the TM5 adjoint model Peter Bergamaschi Climate Change Unit Institute for Environment.
© Crown copyright Met Office Development of the Met Office's 4DEnVar System 6th EnKF Data Assimilation Workshop, May Andrew Lorenc, Neill Bowler,
Characterization of Forecast Error using Singular Value Decomposition Andy Moore and Kevin Smith University of California Santa Cruz Hernan Arango Rutgers.
Assessing the Information Content and Impact of Observations on Ocean Circulation Estimates using 4D-Var Andy Moore Dept. of Ocean Sciences UC Santa Cruz.
ROMS 4D-Var: Past, Present & Future Andy Moore UC Santa Cruz.
Yoichi Ishikawa 1, Toshiyuki Awaji 1,2, Teiji In 3, Satoshi Nakada 2, Tsuyoshi Wakamatsu 1, Yoshimasa Hiyoshi 1, Yuji Sasaki 1 1 DrC, JAMSTEC 2 Kyoto University.
Coupler Design Issues from the Modular Ocean Data Assimilation Project Dr. Richard Loft Computational Science Section Scientific Computing Division National.
Prediction of Ocean Circulation in the Gulf of Mexico and Caribbean Sea An application of the ROMS/TOMS Data Assimilation Models Hernan G. Arango (IMCS,
EPOS use case: High-resolution seismic tomography of Italy
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
ROMS/TOMS Tangent Linear and Adjoint Models Andrew Moore, CU Hernan Arango, Rutgers U Arthur Miller, Bruce Cornuelle, Emanuele Di Lorenzo, Doug Neilson.
The ROMS TL and ADJ Models: Tools for Generalized Stability Analysis and Data Assimilation Hernan Arango, Rutgers U Emanuele Di Lorenzo, GIT Arthur Miller,
October, Scripps Institution of Oceanography An Alternative Method to Building Adjoints Julia Levin Rutgers University Andrew Bennett “Inverse Modeling.
Andrew Schuh, Scott Denning, Marek Ulliasz Kathy Corbin, Nick Parazoo A Case Study in Regional Inverse Modeling.
Physical and Mathematical Interpretations of an Adjoint Model with Application to ROMS Andy Moore University of Colorado Boulder.
Advanced data assimilation methods with evolving forecast error covariance Four-dimensional variational analysis (4D-Var) Shu-Chih Yang (with EK)
Page 1 The Construction and Use of Linear Models in Large-scale Data Assimilation Tim Payne Large-Scale Inverse Problems and Applications in the Earth.
Variational Data Assimilation in Coastal Ocean Problems with Instabilities Alexander Kurapov J. S. Allen, G. D. Egbert, R. N. Miller College of Oceanic.
Advanced data assimilation methods- EKF and EnKF Hong Li and Eugenia Kalnay University of Maryland July 2006.
Algorithms Overview Hernan G. Arango Institute of Marine and Coastal Sciences Rutgers University 2004 ROMS/TOMS European Workshop CNR-ISMAR, Venice, October.
Coastal Ocean Observation Lab John Wilkin, Hernan Arango, John Evans Naomi Fleming, Gregg Foti, Julia Levin, Javier Zavala-Garay,
Coastal Ocean Observation Lab John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean.
Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model Polly Smith, Alison Fowler & Amos Lawless School of.
An Assimilating Tidal Model for the Bering Sea Mike Foreman, Josef Cherniawsky, Patrick Cummins Institute of Ocean Sciences, Sidney BC, Canada Outline:
4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango.
ROMS/TOMS TL and ADJ Models: Tools for Generalized Stability Analysis and Data Assimilation Andrew Moore, CU Hernan Arango, Rutgers U Arthur Miller, Bruce.
The Inverse Regional Ocean Modeling System: Development and Application to Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E., Moore, A., H.
Andy Moore, UCSC Hernan Arango, Rutgers Gregoire Broquet, CNRS Chris Edwards & Milena Veneziani, UCSC Brian Powell, U Hawaii Jim Doyle, NRL Monterey Dave.
Computing a posteriori covariance in variational DA I.Gejadze, F.-X. Le Dimet, V.Shutyaev.
3D/4D-Var Methods Liang Xu (NRL) JCSDA Summer Colloquium on Satellite DA 1 3D-Var/4D-Var Solution Methods Liang Xu Naval Research Laboratory, Monterey,
Ocean Data Variational Assimilation with OPA: Ongoing developments with OPAVAR and implementation plan for NEMOVAR Sophie RICCI, Anthony Weaver, Nicolas.
Tbilisi, GGSWBS'14 Optimization for inverse modelling Ketevan Kasradze 1 Hendrik Elbern 1,2
Weak and Strong Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and Applications Di Lorenzo, E. Georgia Institute of Technology.
Space-Time Mesoscale Analysis System A sequential 3DVAR approach Yuanfu Xie, Steve Koch John McGinley and Steve Albers Global Systems Division Earth System.
Analysis of TraceP Observations Using a 4D-Var Technique
ROMS 4D-Var: The Complete Story Andy Moore Ocean Sciences Department University of California Santa Cruz & Hernan Arango IMCS, Rutgers University.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
Research Vignette: The TransCom3 Time-Dependent Global CO 2 Flux Inversion … and More David F. Baker NCAR 12 July 2007 David F. Baker NCAR 12 July 2007.
Modeling the biological response to the eddy-resolved circulation in the California Current Arthur J. Miller SIO, La Jolla, CA John R. Moisan NASA.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
The OR-WA coastal ocean forecast system Initial hindcast assimilation tests 1 Goals for the COMT project: -DA in presence of the Columbia River -Develop.
ROMS/TOMS European Workshop Alcala de Henares, Spain, November 7, 2006 ROMS Framework and Algorithms Andrew M. Moore UCSC Emanuele Di Lorenzo Georgia Tech.
Weak Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and application for a baroclinic coastal upwelling system Di Lorenzo,
Variational data assimilation: examination of results obtained by different combinations of numerical algorithms and splitting procedures Zahari Zlatev.
Predictability of Mesoscale Variability in the East Australian Current given Strong Constraint Data Assimilation John Wilkin Javier Zavala-Garay and Hernan.
Weak and Strong Constraint 4D variational data assimilation: Methods and Applications Di Lorenzo, E. Georgia Institute of Technology Arango, H. Rutgers.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
Data assimilation for weather forecasting G.W. Inverarity 06/05/15.
Slide 1 NEMOVAR-LEFE Workshop 22/ Slide 1 Current status of NEMOVAR Kristian Mogensen.
Observations and Ocean State Estimation: Impact, Sensitivity and Predictability Andy Moore University of California Santa Cruz Hernan Arango Rutgers University.
Ensemble forecasting/data assimilation and model error estimation algorithm Prepared by Dusanka Zupanski and Milija Zupanski CIRA/CSU Denning group meeting.
14 - finite element method
Predictability of Mesoscale Variability in the East Australia Current given Strong Constraint Data Assimilation Hernan G. Arango IMCS, Rutgers John L.
1 Data assimilation developments for NEMO  A working group was created at the 2006 Developers Meeting with the objective of standardizing for NEMO certain.
X 10 km Model Bathymetry (A)Temperature (B) Alongshore Velocity Cross-shore Velocity Figure 1: Panel (A) model grid and bathymetry. The model has closed.
Korea Institute of Atmospheric Prediction Systems (KIAPS) ( 재 ) 한국형수치예보모델개발사업단 Identical Twin Experiments for the Representer Method with a Spectral Element.
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
Variance for the error covariance. horizontal scale for the error covariance.
Hybrid Data Assimilation
IMCS, Rutgers University University California Santa Cruz
ROMS Framework: Kernel
Gleb Panteleev (IARC) Max Yaremchuk, (NRL), Dmitri Nechaev (USM)
Accelerating Local Ensemble Tangent Linear Models with order reduction Craig H. Bishop The University of Melbourne, Parkville, Australia Joanna.
Assimilating Tropospheric Emission Spectrometer profiles in GEOS-Chem
Adjoint Sensitivity Analysis of the California Current Circulation and Ecosystem using the Regional Ocean Modeling System (ROMS) Andy Moore, Emanuele.
Andy Moore1, Hernan Arango2 & Chris Edwards1
Presentation transcript:

2005 ROMS/TOMS Workshop Scripps Institution of Oceanography La Jolla, CA, October 25, D Variational Data Assimilation Drivers Hernan G. Arango IMCS, Rutgers Andrew M. Moore PAOS, U. Colorado Emanuele Di Lorenzo Georgia Tech Bruce D. Cornuelle SIO, UCSD Arthur J. Miller SIO, UCSD

Objectives To build 4D variational assimilation (4DVAR) platforms: To build 4D variational assimilation (4DVAR) platforms: Strong Constraint S4DVARStrong Constraint S4DVAR  Conventional S4DVAR: outer loop, NLM, ADM  Incremental S4DVAR: inner and outer loops, NLM, TLM, ADM (Courtier et al., 1994)  Efficient Incremental S4DVAR (Weaver et al., 2003) Weak Constraint W4DVAR (IOM)Weak Constraint W4DVAR (IOM)  Indirect Representer Method: inner and outer loops, NLM, TLM, RPM, ADM (Egbert et al., 1994; Bennett et al, 1997)

ROMS/TOMS Framework

How To Run Run nonlinear model (NLM) and save background state trajectory at regular intervals over the desired data assimilation time window (FWDname) Run nonlinear model (NLM) and save background state trajectory at regular intervals over the desired data assimilation time window (FWDname)  Activate CPP options FORWARD_WRITE, FORWARD_RHS, and OUT_DOUBLE Variational data assimilation CPP options: Variational data assimilation CPP options:  S4DVAR Conventional strong constraint 4DVAR  IS4DVAR Incremental strong constraint 4DVAR  W4DVAR Weak constraint 4DVAR (BACKGROUND, FORWARD_READ, FORWARD_MIXING) (BACKGROUND, FORWARD_READ, FORWARD_MIXING) Set input parameter in s4dvar.in or w4dvar.in: Set input parameter in s4dvar.in or w4dvar.in:  Descent algorithm parameters  Spatial convolution parameters (decorrelation scales)  Observation file names  First guess solution (background) file name T str T end

Metadata Dimensions: recordNumber of saved iteration surveyNumber of different time weightNumber of interpolation weight datumObservations counter, unlimited dimension Variables: Nobs(survey)Number of observations per time survey survey_time(survey)Survey time (days) obs_type(datum)State variable ID associated with observation obs_time(datum)Time of observation (days) obs_lon(datum)Longitude of observation (degrees_east) obs_lat(datum)Latitude of observation (degrees_north) obs_depth(datum)Depth of observation (meters or level) obs_Xgrid(datum)X-grid observation location (nondimensional) obs_Ygrid(datum)Y-grid observation location (nondimensional) obs_Zgrid(datum)Z-grid observation location (nondimensional) obs_error(datum)Observation error, assigned weight obs_value(datum)Observation value NLmodel_value(record,datum)Nonlinear model interpolated value TLmodel_value(record,datum)Tangent linear model interpolated value Hmat(weight,datum)Interpolation weights

Observations NetCDF dimensions: record = 2 ; survey = 1 ; weight = 8 ; state_variable = 7 ; datum = UNLIMITED ; // (79416 currently) variables: char spherical ; spherical:long_name = "grid type logical switch" ; int Nobs(survey) ; Nobs:long_name = "number of observations with the same survey time" ; double survey_time(survey) ; survey_time:long_name = "survey time" ; survey_time:units = "days since :00:00" ; survey_time:calendar = " days in every year" ; double obs_variance(state_variable) ; obs_variance:long_name = "global (time and space) observation variance" ; obs_variance:units = "squared state variable units" ; int obs_type(datum) ; obs_type:long_name = "model state variable associated with observation" ; obs_type:units = "nondimensional" ; double obs_time(datum) ; obs_time:long_name = "time of observation" ; obs_time:units = "days since :00:00" ; obs_time:calendar = " days in every year" ; double obs_depth(datum) ; obs_depth:long_name = "depth of observation" ; obs_depth:units = "meter" ; double obs_Xgrid(datum) ; obs_Xgrid:long_name = "x-grid observation location" ; obs_Xgrid:units = "nondimensional" ; double obs_Ygrid(datum) ; obs_Ygrid:long_name = "y-grid observation location" ; obs_Ygrid:units = "nondimensional" ; double obs_Zgrid(datum) ; obs_Zgrid:long_name = "z-grid observation location" ; obs_Zgrid:units = "nondimensional" ; double obs_error(datum) ; obs_error:long_name = "observation error, assigned weight, inverse variance" ; obs_error:units = "inverse squared state variable units" ; double obs_value(datum) ; obs_value:long_name = "observation value" ; obs_value:units = "state variable units" ; double NLmodel_value(datum, record) ; NLmodel_value:long_name = "nonlinear model interpolated value" ; NLmodel_value:units = "state variable units" ; double TLmodel_value(datum, record) ; TLmodel_value:long_name = "tangent linear model interpolated value" ; TLmodel_value:units = "state variable units" ; double Hmat(datum, weight) ; Hmat:long_name = "interpolation weights" ; Hmat:units = "nondimensional" (i1,j1,k1) (i2,j2,k2) VariableID ζ 1 u2 v3 u4 v5 temp6 salt7

Processing Use hindices, try_range and inside routines to transform (lon,lat) to ( ,  )Use hindices, try_range and inside routines to transform (lon,lat) to ( ,  ) Find how many survey times occur within the data set (survey dimension)Find how many survey times occur within the data set (survey dimension) Count observations available per survey (Nobs) and assign their times (survey_time)Count observations available per survey (Nobs) and assign their times (survey_time) Sort the observation in ascending time order and observation time for efficiencySort the observation in ascending time order and observation time for efficiency Save a copy of the observation fileSave a copy of the observation file Several matlab scripts to process observationsSeveral matlab scripts to process observations

“Conventional” S4DVAR NLM: compute model-observations misfit and cost function ADM: compute cost function gradients Compute NLM initial conditions using first guess conjugate gradient step size NLM: compute change in cost function Compute NLM initial conditions using refined conjugate gradient step size CALL initial CALL main3d CALL ad_initial CALL ad_main3d CALL initial CALL main3d CALL descent CALL wrt_ini CALL descent CALL wrt_ini Outer Loop Ipass=1 Ipass=2

Incremental S4DVAR CALL initial CALL main3d Outer Loop CALL tl_initial CALL tl_main3d CALL ad_initial CALL ad_main3d CALL tl_initial CALL tl_main3d CALL descent CALL tl_wrt_ini CALL descent CALL tl_wrt_ini Inner Loop Ipass=1 Ipass=2 CALL ini_adjust CALL wrt_ini NLM: compute basic state trajectory and extract model at observations locations TLM: compute misfit cost function between model (NLM+TLM) and observations ADM: compute cost function gradients Compute TLM initial conditions using first guess conjugate gradient step size TLM: compute change in cost function Compute TLM initial conditions using refined conjugate gradient step size Compute NLM new initial conditions (NLM+TLM)

Efficient Incremental S4DVAR NLM: compute basic state trajectory and extract model at observations locations ADM: compute initial estimate of the gradient Initialize conjugate direction as the negative of the gradient (adjoint) solution RPM: compute misfit cost function between model (NLM+TLM) and observations ADM: compute cost function gradients Compute TLM initial conditions using conjugate gradient step size Compute NLM new initial conditions (NLM+TLM) CALL initial CALL main3d Outer Loop CALL tl_initial CALL tl_main3d CALL ad_initial CALL ad_main3d CALL descent CALL tl_wrt_ini Inner Loop CALL ini_adjust CALL wrt_ini CALL ad_initial CALL ad_main3d CALL ini_descent

W4DVAR, IOM iom_roms: compute first guess and misfit between observation and model nl_roms: compute basic state trajectory Inner loop, backward (ad_roms) and forward (tl_roms) integrations to compute ad_roms: backward integration to compute iom_roms: compute nl_roms < nl_roms.in ad_roms < ad_roms.in tl_roms < tl_roms.in IOM components iom_roms < iom_roms.in ad_roms < ad_roms.in iom_roms < iom_roms.in Inner Loop Outer Loop

It is running in parallelIt is running in parallel Pre-conditioning, pre-conditioning …Pre-conditioning, pre-conditioning … Background term in cost functionBackground term in cost function Modeling of background error covarianceModeling of background error covariance Efficient spatial convolution algorithms (3D implicit diffusion algorithms; parallelism)Efficient spatial convolution algorithms (3D implicit diffusion algorithms; parallelism) Open boundary condition challengesOpen boundary condition challenges Quality control of observationsQuality control of observations New observational data streamsNew observational data streams Final Remarks