Invalidity of Molecular Dynamics in Heat Transfer Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 2nd Inter. Conf. Nanomaterials: Applcations.

Slides:



Advertisements
Similar presentations
Nanotechnology Purifying drinking water in the developing world Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Isfahan University of Technology.
Advertisements

Quantum Mechanics and Spin-Valves Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong The 13th IEEE Inter. Conf. on Nanotechnology, August 5-8, Beijing,
Validity of Heat Transfer by Molecular Dynamics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Tribochemistry - HAGI HAGI, October 26-28,
Temperature, Heat, and the First Law of Thermodynamics
QED Disinfection of Drinking Water in the Developing World Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 8th Inter. Conf. on Thermal Engineering.
Disinfection of Ebola in the Developing World Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong World Congress and Expo on Nanotechnology and Material.
QED v LED Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong QED v. LED in UV-C Disinfection and Flashlights 1.
Validity of Molecular Dynamics Heat Transfer by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China.
Flow electrification by cavity QED T. V. Prevenslik 11F, Greenburg Court Discovery Bay, Hong Kong T. V. Prevenslik 11F, Greenburg Court Discovery Bay,
QED Disinfection of Drinking Water in China Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Inter. Conf. on Water Resource and Environment (WRE.
Flow of Fluids and Solids at the Nanoscale Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China Proc. 2nd Conference on Heat Transfer Fluid.
Physics 361 Principles of Modern Physics Lecture 3.
WORLD TRIBOLOGY CONGRESS 2009, September 6 th to 11th, 2009 —Kyoto, Japan Triboemission and X-rays Thomas Prevenslik Discovery Bay, Hong Kong, China 1.
ECI - NANOFLUIDS: Fundamentals and Applications II, August 15-20, 2010, Montreal QED Induced Heat Transfer Thomas Prevenslik QED Radiations Discovery Bay,
Quantum Mechanics in Nanotechnology Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Isfahan University of Technology - Quantum Mechanics in Nanotechnology.
Nanoscale Heat Transfer by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong ASME: 3rd Micro/Nanoscale Heat and Mass Transfer.
International Conference on Intelligent Computing - ICIC Zhengzhou, August 11-14, 2011 Memristors by Quantum Mechanics Thomas Prevenslik QED Radiations.
Invisible Universe Int. Conf - 29 June – 3 July 2009 — Paris, France Dark Energy and Cosmic Dust Thomas Prevenslik Berlin, Germany Hong Kong, China 1.
Quantum Mechanics and Nanoelectronics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong ICMON 2011 : Inter.l Conf. Micro, Opto, Nanoelectronics,
IEEE Nanomed 2009, October , 2009 —Tainan, Taiwan Nanoparticle Induced DNA Damage Thomas Prevenslik Discovery Bay, Hong Kong, China 1.
Validity of Molecular Dynamics in Computational Nanoscience Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China Inter. Conf. on Nanotechnology.
Stability of Nanobubbles by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 Topical Problems of Fluid Mechanics - Institute.
Validity of Molecular Dynamics by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China ASME 4th Micro/Nanoscale Heat Transfer.
Nanotechnology in the Disinfection of Drinking Water in China Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Nano - S & T th Congress.
INTRODUCTION Characteristics of Thermal Radiation Thermal Radiation Spectrum Two Points of View Two Distinctive Modes of Radiation Physical Mechanism of.
Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing Specific Heat at the Nanoscale Thomas Prevenslik QED Radiations Discovery.
WSEAS (HTE08); August 20-22, 2008 — Rhodes Island, Greece Nanofluids by QED Induced Heat Transfer Thomas Prevenslik Discovery Bay, Hong Kong 1.
Nanoscale Heat Transfer in Thin Films Thomas Prevenslik Discovery Bay, Hong Kong, China 1 ASME Micro/Nanoscale Heat / Mass Transfer Int. Conf., Dec ,
Cosmic Dust and Cosmology Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China APRIM th Asia-Pacific Regional IAU Meeting - August.
Discovery Bay, Hong Kong
SpinValves by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong NANOSMAT-Asia : Inter. Conf. Surf., Coat., Nano-Materials; Wuhan,
3rd Int. Conf.on Mechanical and Electrical Tech. - ICMET Dalian, August 26-27, 2011 Neuron Synapse by Quantum Mechanics Thomas Prevenslik QED Radiations.
QED Cooling of Electronics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong IEEE NEMS 2014 – 9 th Int. Conf. Nano/Micro Systems, April ,
Unphysical Heat Transfer by Molecular Dynamics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Inter. Conf. Frontiers Mechanical/Materials Engineering.
Ninth Asian Thermophysical Properties Conference – ATPC 2010, October 19-22, Beijing Specific Heat at the Nanoscale Thomas Prevenslik QED Radiations Discovery.
ASME NanoEngineering for Medicine and Biology (NEMB), Feb , 2010 —Houston DNA Damage by Nanoparticles Thomas Prevenslik QED Radiation Berlin and.
Third Int. Conf. Quantum, Nano, and Micro Tech. (ICQNM 2009) February 1-6, 2009 — Cancun, Mexico Heat Transfer in Thin Films Thomas Prevenslik Berlin,
NanoSafe 10, Nov , 2010 — Minatec, Grenoble, France Nanoparticle Toxicity and Cancer Thomas Prevenslik QED Radiations Hong Kong, China 1.
Heat Transfer in Nanoelectronics by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong InterPACK 2013 Inter. Conf. on Packaging.
12 th Intersociety Conf. Thermal Phenomenon in Electronic Systems ; June 2-5, 2010, Las Vegas Thermophones by Quantum Mechanics Thomas Prevenslik QED Radiations.
QED The Fourth Mode of Heat Transfer? Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China.
QED: The Fourth Mode of Heat Transfer
Nanofluids by Quantum Mechanics Thomas Prevenslik Discovery Bay, Hong Kong 1.
TRIBOCHEMISTRY - KYOTO, September 2 nd – 4 th, 2009 —Kyoto, Japan Tribochemistry by Quantum Mechanics Thomas Prevenslik Discovery Bay, Hong Kong, China.
The Fourier Law at Macro and Nanoscales Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 ASME 4th Micro/Nanoscale Heat Transfer Conf. (MNHMT-13),
Near-Field Radiation by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong ASME 4th Micro/Nanoscale Heat Transfer Conf. (MNHMT-13),
Nanocomposites by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 Conference on Mechanics of Composites.
Fifth Int. Conf. Thermal Eng. – Theory & Applications - May 10-14, Marrakesh Morroco Nanoscale Heat Transfer by Quantum Mechanics Thomas Prevenslik.
Nanoelectronics by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Microtherm 2013 Microtechnology-Thermal Problems in Electronics.
Molecular Dynamics of Nanowires by Quantum Mechanics Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 1 ASME 4th Micro/Nanoscale Heat Transfer.
QED Heat Transfer Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Inter. Conf. Nanotechnology Modeling and Simulation (ICNMS'16) Prague April.
Evanescent waves cannot exist in the near-field! Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Bremen Workshop on Light Scattering 2016, Bremen,
Shock Waves and High Temperatures? Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Pressure, Energy, Temperature, Extreme Rates (PETER – 2016)
11 th Biotechnology and Biotech Industries Meet., July 28-29, Berlin, 2016 Cancer caused by UV radiation from Nanoparticles in GM food? Thomas Prevenslik.
Cosmic Dust and Discovery of Colliding Black Holes Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong Gravitational Wave Astronomy Meeting in Paris,
Dark matter does not exist
Cosmology by Cosmic Dust
Superlens by Transformative Optics or QED?
Molecular Dynamics by X-Rays?
MD by Quantum Mechanics
DNA Damage by Nanoparticles
Discovery Bay, Hong Kong
Heat Transfer in Nanoelectronics by Quantum Mechanics
Light-matter interaction in Cosmic Dust
Nanoparticles and Dark Matter
Dust and the Origin of the Universe
Charge Manipulation of Flow in Nanochannels
Invalidity of Thermal Fluctuations at the Nanoscale
Validity of Molecular Dynamics by Quantum Mechanics
1/f Noise by Quantum Mechanics
Presentation transcript:

Invalidity of Molecular Dynamics in Heat Transfer Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept ,

Molecular Dynamics (MD) is commonly used to simulate heat transfer at the nanoscale in the belief: Atomistic response using L-J potentials (ab initio) is more accurate than macroscopic finite element (FE) programs, e.g., ANSYS, COMSOL, etc. In this talk, I argue: FE gives equivalent heat transfer to MD, but both are invalid at the nanoscale by Quantum Mechanics (QM) And ask the question: How to make MD and FE at least consistent with QM? Introduction 2 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , 2012

MD and FE Restrictions MD and FE are restricted by Statistical Mechanics (SM) to atoms having thermal heat capacity 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept ,

Validity Historically, MD simulations of the bulk performed in submicron computation boxes under periodic boundary conditions (PBC) assume atoms have heat capacity In the macroscopic bulk being simulated, all atoms do indeed have heat capacity (Computation box taken from bulk for analysis) MD is therefore valid for bulk PBC simulations 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept ,

Today, MD is not made for bulk simulations, but rather for the atomistic response of discrete nanostructures Problem is MD programs based on SM assume the atom has heat capacity that I will show is the cause of the unphysical results Conductivity in Thin films depends on thickness Nanofluids violate mixing rules, etc Why is this so? Problem 5 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , 2012

Heat Capacity of the Atom 6 Nanostructures kT eV SM, MD and FE (kT > 0) QM (kT = 0) 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , 2012 In nanostructures, the atom has no heat capacity by QM

2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , 2012 Conservation of Energy Lack of heat capacity by QM precludes EM energy conservation in discrete nanostructures by an increase in temperature, but how does conservation proceed? Proposal Absorbed EM energy is conserved by creating QED photons inside the nanostructure - by frequency up or down - conversion to the TIR resonance of the nanostructure. QED = Quantum Electrodynamics TIR = Total Internal Reflection 7 QED photons create charge or emitted to surroundings

If the refractive index of nanostructure is greater than that of surroundings, the proposed QED photons are confined by TIR ( Tyndall, 1870 ) NPs have high surface to volume ratio. EM energy is absorbed almost totally in the NP surface. The NP surface is the TIR wave function shape of QED photons. QED photons are created upon EM energy absorption. f = c/ = 2nD E = hf TIR Confinement 8 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , 2012

QED Heat Transfer 9 QED Photons Phonons Charge  T = 0

MD - Discrete and PBC Akimov, et al. “Molecular Dynamics of Surface- Moving Thermally Driven Nanocars,” J. Chem. Theory Comput. 4, 652 (2008). Sarkar et al., “Molecular dynamics simulation of effective thermal conductivity and study of enhance thermal transport in nanofluids,” J. Appl. Phys, 102, (2007). 10 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , 2012 Pretty Picture v QM Correctness? MD for Discrete  kT = 0, But MD assumes kT > 0 Car distorts but does not move Macroscopic analogy, FE = MD Classical Physics does not work QM differs No increase in car temperature Charge is produced photoelectric effect Car move by electrostatic interaction MD for kT > 0 is valid for PBC because atoms in macroscopic nanofluid have kT > 0

Thermal Gradients 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , Q-W Hou, B-Y Cao and Z-Y Guo,“Thermal gradient induced actuation of double-walled carbon nanotubes,”, Nanotechnology, Vol. 20, , 2009 MD of Concentric CNTs With MD, no CNT motion found. Motion by adding a thermophoretic spring, but then no need for MD By QM, more QED radiation is produced at hot than cold end Charge is produced Outer CNT moves under charge gradient to cold end. Classical physics does not produce charge

Sputtering 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , Vienna U. Technology, www. Research Group Surface & Plasma Technology -.mhtwww. Research Group Surface & Plasma Technology -.mht MD 5 keV Ar atoms Impacting Cu What can be done? During MD solution, use Nose-Hoover thermostat to hold temperature constant as required by QM. The QED radiation emitted is the net thermostat heat. Input the QED radiation in FE programs to determine effect on the surroundings..

MD heat transfer based on SM assumes atoms have kT energy which is valid only for PBC MD simulations of discrete nanostructures do not produce charge and are meaningless, except for pretty pictures. MD and FE provide equivalent heat transfer simulations of discrete nanostructures, but both are invalid by QM and give unphysical results QM negates SM, thermal conduction, Fourier Theory, and heat current at the nanoscale Recommendation Estimate the time-history of QED radiation and use in FE simulations to determine the effect on macroscopic surroundings. MD may not even be necessary Conclusions 13 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , 2012

Expanding Unverse In 1929, Hubble measured the redshift of galaxy light that by the Doppler Effect showed the Universe is expanding. But cosmic dust of submicron NPs permeate space and redshift galaxy light without Universe expansion 14

2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , Redshift without Universe expansion Based on classical physics, astronomers assume absorbed galaxy photon increases temperature of dust NPs Redshift in Cosmic Dust

2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept , 2012 Referring to his calculation showing acccelerated Universe expansion, Reiss is quoted as saying: "I remember thinking, I've made a terrible mistake and I have to find this mistake" Others said: “[Riess] did a lot after the initial result to show that there was no sneaky effect due to dust absorption“ Reiss did make a mistake - Redshift does occur in dust No Universe expansion, accelerated or otherwise 16 Nobel Mistake Astronomers Schmidt, Pearlmutter, and Reiss received the 2011 Physics Nobel for discovery of an accelerated expanding Universe

Questions & Papers 2nd Inter. Conf. Nanomaterials: Applcations & Properties - NAP, Alushta, Sept ,