Hierarchical Deformation of Locally Rigid Meshes Josiah Manson and Scott Schaefer Texas A&M University.

Slides:



Advertisements
Similar presentations
Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
Advertisements

Isosurfaces Over Simplicial Partitions of Multiresolution Grids Josiah Manson and Scott Schaefer Texas A&M University.
As-Rigid-As-Possible Surface Modeling
CSE554Extrinsic DeformationsSlide 1 CSE 554 Lecture 9: Extrinsic Deformations Fall 2012.
CSE554Extrinsic DeformationsSlide 1 CSE 554 Lecture 10: Extrinsic Deformations Fall 2014.
© 2011 Autodesk Autodesk Moldflow 2012 new feature Non-zero displacement BC for Warp How to use it in a good way??
Parameterization-Aware MIP-Mapping Josiah Manson and Scott Schaefer Texas A&M University.
SGP 2008 A Local/Global Approach to Mesh Parameterization Ligang Liu Lei Zhang Yin Xu Zhejiang University, China Craig Gotsman Technion, Israel Steven.
3DSkeleton-based Human Modeling with Metaballs 18 April 2008 Donghun Kim Robot Vision Lab.
Xianfeng Gu, Yaling Wang, Tony Chan, Paul Thompson, Shing-Tung Yau
Inter-Surface Mapping John Schreiner, Arul Asirvatham, Emil Praun (University of Utah) Hugues Hoppe (Microsoft Research)
MATHIEU GAUTHIER PIERRE POULIN LIGUM, DEPT. I.R.O. UNIVERSITÉ DE MONTRÉAL GRAPHICS INTERFACE 2009 Preserving Sharp Edges in Geometry Images.
Pseudo-Skeleton based ARAP Mesh Deformation M. Zollhöfer, A. Vieweg, J. Süßmuth and G. Greiner Computer Graphics Group, FAU Erlangen-Nuremberg, Germany.
1 Free-Form Deformations Dr. Scott Schaefer. 2/28 Deformation.
Atomic Volumes for Mesh Completion Joshua Podolak Szymon Rusinkiewicz Princeton University.
High-Quality Simplification with Generalized Pair Contractions Pavel Borodin,* Stefan Gumhold, # Michael Guthe,* Reinhard Klein* *University of Bonn, Germany.
Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
INFORMATIK Differential Coordinates for Interactive Mesh Editing Yaron Lipman Olga Sorkine Daniel Cohen-Or David Levin Tel-Aviv University Christian Rössl.
A Sketch-Based Interface for Detail-Preserving Mesh Editing Andrew Nealen Olga Sorkine Marc Alexa Daniel Cohen-Or.
Spectral embedding Lecture 6 1 © Alexander & Michael Bronstein
Correspondence & Symmetry
Spectral Embedding Alexander Bronstein, Michael Bronstein
Numerical geometry of non-rigid shapes
FiberMesh: Designing Freeform Surfaces with 3D Curves
Feature-Based Mesh Editing Qingnan Zhou 1 Tino Weinkauf 1,2 Olga Sorkine 1,3 1 NYU 2 MPII Saarbrücken 3 ETH Zürich.
Andrew Nealen, TU Berlin, CG 11 Andrew Nealen TU Berlin Takeo Igarashi The University of Tokyo / PRESTO JST Olga Sorkine Marc Alexa TU Berlin Laplacian.
Introduction to Non-Rigid Body Dynamics A Survey of Deformable Modeling in Computer Graphics, by Gibson & Mirtich, MERL Tech Report Elastically Deformable.
1 Numerical Geometry of Non-Rigid Shapes Invariant shape similarity Invariant shape similarity © Alexander & Michael Bronstein, © Michael Bronstein,
1 Numerical geometry of non-rigid shapes Non-Euclidean Embedding Non-Euclidean Embedding Lecture 6 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book.
Visualization and graphics research group CIPIC January 21, 2003Multiresolution (ECS 289L) - Winter Surface Simplification Using Quadric Error Metrics.
Shape Blending Joshua Filliater December 15, 2000.
Tracking Surfaces with Evolving Topology Morten Bojsen-Hansen IST Austria Hao Li Columbia University Chris Wojtan IST Austria.
CSE554Laplacian DeformationSlide 1 CSE 554 Lecture 8: Laplacian Deformation Fall 2012.
Computer Graphics Group Tobias Weyand Mesh-Based Inverse Kinematics Sumner et al 2005 presented by Tobias Weyand.
Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces
Niloy J. Mitra Leonidas J. Guibas Mark Pauly TU Vienna Stanford University ETH Zurich SIGGRAPH 2007.
Modal Shape Analysis beyond Laplacian (CAGP 2012) Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, Konrad Polthier (brief) Presenter: ShiHao.Wu.
Moving Least Squares Coordinates Josiah Manson and Scott Schaefer Texas A&M University.
CS 551/651 Advanced Computer Graphics Warping and Morphing Spring 2002.
Recent Work on Laplacian Mesh Deformation Speaker: Qianqian Hu Date: Nov. 8, 2006.
Presented By Greg Gire Advised By Zoë Wood California Polytechnic State University.
Mesh Deformation Based on Discrete Differential Geometry Reporter: Zhongping Ji
1 Dr. Scott Schaefer Surface Simplification. 2/32 Surface Simplification Given a closed polygon model, reduce the number of polygons and maintain appearance.
INFORMATIK Laplacian Surface Editing Olga Sorkine Daniel Cohen-Or Yaron Lipman Tel Aviv University Marc Alexa TU Darmstadt Christian Rössl Hans-Peter Seidel.
Procrustes Analysis and Its Application in Computer Graphics Speaker: Lei Zhang 2008/10/08.
Copyright © 2010 Siemens Medical Solutions USA, Inc. All rights reserved. Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-based.
Andrew Nealen / Olga Sorkine / Mark Alexa / Daniel Cohen-Or SoHyeon Jeong 2007/03/02.
AS-RIGID-AS-POSSIBLE SHAPE MANIPULATION
Image Deformation Using Moving Least Squares Scott Schaefer, Travis McPhail, Joe Warren SIGGRAPH 2006 Presented by Nirup Reddy.
Mesh Coarsening zhenyu shu Mesh Coarsening Large meshes are commonly used in numerous application area Modern range scanning devices are used.
Hierarchical Error-Driven Approximation of Implicit Surfaces from Polygonal Meshes Takashi Kanai Yutaka Ohtake Kiwamu Kase University of Tokyo RIKEN, VCAD.
David Levin Tel-Aviv University Afrigraph 2009 Shape Preserving Deformation David Levin Tel-Aviv University Afrigraph 2009 Based on joint works with Yaron.
using Radial Basis Function Interpolation
National Taiwan University
A Part-aware Surface Metric for Shape Analysis Rong Liu 1, Hao Zhang 1, Ariel Shamir 2, and Daniel Cohen-Or 3 1 Simon Fraser University, Canada 2 The Interdisciplinary.
CDS 301 Fall, 2008 Domain-Modeling Techniques Chap. 8 November 04, 2008 Jie Zhang Copyright ©
Differential Coordinates and Laplacians Nicholas Vining Technical Director, Gaslamp Games.
ASP algorithm Image term Stretch term Bending term Self-proximity term Vertex-vertex proximity constraints.
Mesh Modelling With Curve Analogies
Morphing and Shape Processing
You can check broken videos in this slide here :
CSE 554 Lecture 9: Laplacian Deformation
Positive Gordon–Wixom Coordinates
Volumetric aberrancy: a complement to coherence and curvature
1 Introduction to Algebra: Integers.
CSE 554 Lecture 10: Extrinsic Deformations
Simplification and Improvement of Tetrahedral Models for Simulation
Boolean Operations for Free-form Models Represented in Geometry Images
Simplification of Articulated Mesh
Convolution.
Presentation transcript:

Hierarchical Deformation of Locally Rigid Meshes Josiah Manson and Scott Schaefer Texas A&M University

Motivation Simplified control of deformation

Motivation Simplified control of deformation

Motivation Simplified control of deformation No auxiliary control structures

Motivation Simplified control of deformation No auxiliary control structures Fast feedback

Auxiliary Controls Skeletons

Auxiliary Controls [Sederberg and Parry 1986] Grids

Auxiliary Controls [Ju et al. 2005][Joshi et al. 2007] Cages

Intrinsic Controls [Sorkine and Alexa 2007][Botsch et al. 2006] Thin shell simulation

Intrinsic Controls Volumetric simulation [Mezger et al. 2007]

Intrinsic Controls Vibrational modes [Hildebrandt et al. 2012]

Our Solution 1.Simplify the mesh 2.Deform low-resolution mesh 3.Add details back to the mesh 123

Mesh Simplification 1

Edge Collapse Metric Distance to planesDistance to points

Edge Collapse Metric Distance to planesDistance to points

Edge Collapse Metric Distance to planesDistance to points

Edge Collapse Metric Distance to planesDistance to points

Mesh Deformation 2

As-rigid-as-possible Deformation As-rigid-as-possible surface modeling [Sorkine and Alexa 2007]

As-rigid-as-possible Deformation As-rigid-as-possible surface modeling [Sorkine and Alexa 2007] Added ability to satisfy constraints not at mesh vertices

As-rigid-as-possible Deformation

Adding Details 3

Adding Details Constrained Deform local neighborhood before expansion

Adding Details Constrained

Different Transforms RigidSimilarityStretch

Different Transforms Rigid [Arung et al. 1987]

Different Transforms Rigid [Arung et al. 1987]

Different Transforms Rigid [Arung et al. 1987]

Different Transforms Rigid [Arung et al. 1987]

Different Transforms Similarity [Horn 1987]

Different Transforms Stretch

Different Transforms Stretch

Different Transforms Stretch

Different Transforms Stretch

Different Transforms Stretch

Results

Comparison of Methods Original PriMo Thin Shells Gradient Laplacian Rotation Invariant Ours

Convergence Time

Benefits of Simplification

Conclusion Calculate deformation at low resolution Expand to high resolution – As-rigid-as-possible, satisfy constraints – Use a local, symmetric expansion operation Combine with other methods – Different deformation of base mesh – As-similar-as-possible, stretch